Suppr超能文献

基于高效轻量级高分辨率网络(EL-HRNet)的人体姿态估计。

Human Pose Estimation Based on Efficient and Lightweight High-Resolution Network (EL-HRNet).

机构信息

School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710054, China.

Xi'an People's Hospital, Xi'an 710054, China.

出版信息

Sensors (Basel). 2024 Jan 9;24(2):0. doi: 10.3390/s24020396.

Abstract

As an important direction in computer vision, human pose estimation has received extensive attention in recent years. A High-Resolution Network (HRNet) can achieve effective estimation results as a classical human pose estimation method. However, the complex structure of the model is not conducive to deployment under limited computer resources. Therefore, an improved Efficient and Lightweight HRNet (EL-HRNet) model is proposed. In detail, point-wise and grouped convolutions were used to construct a lightweight residual module, replacing the original 3 × 3 module to reduce the parameters. To compensate for the information loss caused by the network's lightweight nature, the Convolutional Block Attention Module (CBAM) is introduced after the new lightweight residual module to construct the Lightweight Attention Basicblock (LA-Basicblock) module to achieve high-precision human pose estimation. To verify the effectiveness of the proposed EL-HRNet, experiments were carried out using the COCO2017 and MPII datasets. The experimental results show that the EL-HRNet model requires only 5 million parameters and 2.0 GFlops calculations and achieves an AP score of 67.1% on the COCO2017 validation set. In addition, PCKh@0.5mean is 87.7% on the MPII validation set, and EL-HRNet shows a good balance between model complexity and human pose estimation accuracy.

摘要

作为计算机视觉的一个重要方向,人体姿态估计近年来受到了广泛关注。高分辨率网络(HRNet)作为一种经典的人体姿态估计方法,可以达到有效的估计结果。然而,模型复杂的结构不利于在有限的计算机资源下部署。因此,提出了一种改进的高效轻量级 HRNet(EL-HRNet)模型。具体来说,使用逐点和分组卷积构建了一个轻量级残差模块,用其替换原始的 3×3 模块来减少参数。为了弥补网络轻量化带来的信息损失,在新的轻量级残差模块之后引入卷积注意力模块(CBAM),构建轻量级注意力基本块(LA-Basicblock)模块,以实现高精度的人体姿态估计。为了验证所提出的 EL-HRNet 的有效性,使用 COCO2017 和 MPII 数据集进行了实验。实验结果表明,EL-HRNet 模型只需要 500 万个参数和 2.0GFlops 计算量,在 COCO2017 验证集上的 AP 得分达到 67.1%。此外,在 MPII 验证集上 PCKh@0.5mean 达到 87.7%,EL-HRNet 在模型复杂度和人体姿态估计精度之间表现出良好的平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1031/11154558/dcc05ffc0be2/sensors-24-00396-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验