Suppr超能文献

PMVT:一种用于移动设备上植物病害识别的轻量级视觉变换器。

PMVT: a lightweight vision transformer for plant disease identification on mobile devices.

作者信息

Li Guoqiang, Wang Yuchao, Zhao Qing, Yuan Peiyan, Chang Baofang

机构信息

Institute of Agricultural Economics and Information, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.

College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China.

出版信息

Front Plant Sci. 2023 Sep 26;14:1256773. doi: 10.3389/fpls.2023.1256773. eCollection 2023.

Abstract

Due to the constraints of agricultural computing resources and the diversity of plant diseases, it is challenging to achieve the desired accuracy rate while keeping the network lightweight. In this paper, we proposed a computationally efficient deep learning architecture based on the mobile vision transformer (MobileViT) for real-time detection of plant diseases, which we called plant-based MobileViT (PMVT). Our proposed model was designed to be highly accurate and low-cost, making it suitable for deployment on mobile devices with limited resources. Specifically, we replaced the convolution block in MobileViT with an inverted residual structure that employs a 7×7 convolution kernel to effectively model long-distance dependencies between different leaves in plant disease images. Furthermore, inspired by the concept of multi-level attention in computer vision tasks, we integrated a convolutional block attention module (CBAM) into the standard ViT encoder. This integration allows the network to effectively avoid irrelevant information and focus on essential features. The PMVT network achieves reduced parameter counts compared to alternative networks on various mobile devices while maintaining high accuracy across different vision tasks. Extensive experiments on multiple agricultural datasets, including wheat, coffee, and rice, demonstrate that the proposed method outperforms the current best lightweight and heavyweight models. On the wheat dataset, PMVT achieves the highest accuracy of 93.6% using approximately 0.98 million (M) parameters. This accuracy is 1.6% higher than that of MobileNetV3. Under the same parameters, PMVT achieved an accuracy of 85.4% on the coffee dataset, surpassing SqueezeNet by 2.3%. Furthermore, out method achieved an accuracy of 93.1% on the rice dataset, surpassing MobileNetV3 by 3.4%. Additionally, we developed a plant disease diagnosis app and successfully used the trained PMVT model to identify plant disease in different scenarios.

摘要

由于农业计算资源的限制以及植物病害的多样性,在保持网络轻量级的同时实现理想的准确率具有挑战性。在本文中,我们提出了一种基于移动视觉Transformer(MobileViT)的计算高效的深度学习架构,用于植物病害的实时检测,我们将其称为基于植物的MobileViT(PMVT)。我们提出的模型旨在实现高精度和低成本,使其适合在资源有限的移动设备上部署。具体而言,我们用一个采用7×7卷积核的倒置残差结构替换了MobileViT中的卷积块,以有效地对植物病害图像中不同叶片之间的长距离依赖关系进行建模。此外,受计算机视觉任务中多级注意力概念的启发,我们将卷积块注意力模块(CBAM)集成到标准的ViT编码器中。这种集成使网络能够有效避免无关信息并专注于关键特征。与各种移动设备上的替代网络相比,PMVT网络在保持不同视觉任务高精度的同时减少了参数数量。在包括小麦、咖啡和水稻在内的多个农业数据集上进行的广泛实验表明,所提出的方法优于当前最佳的轻量级和重量级模型。在小麦数据集上,PMVT使用约98万个(M)参数实现了93.6%的最高准确率。这个准确率比MobileNetV3高1.6%。在相同参数下,PMVT在咖啡数据集上的准确率为85.4%,超过SqueezeNet 2.3%。此外,我们的方法在水稻数据集上的准确率为93.1%,超过MobileNetV3 3.4%。此外,我们开发了一个植物病害诊断应用程序,并成功使用训练好的PMVT模型在不同场景中识别植物病害。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f249/10562605/d85d59c61f1b/fpls-14-1256773-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验