Suppr超能文献

利用智能电表数据检测日常活动中的异常

Detection of Anomalies in Daily Activities Using Data from Smart Meters.

机构信息

Electronics Department, University of Alcala, 28801 Alcalá de Henares, Spain.

Electronics Technology Department, Rey Juan Carlos University, 28933 Móstoles, Spain.

出版信息

Sensors (Basel). 2024 Jan 14;24(2):515. doi: 10.3390/s24020515.

Abstract

The massive deployment of smart meters in most Western countries in recent decades has allowed the creation and development of a significant variety of applications, mainly related to efficient energy management. The information provided about energy consumption has also been dedicated to the areas of social work and health. In this context, smart meters are considered single-point non-intrusive sensors that might be used to monitor the behaviour and activity patterns of people living in a household. This work describes the design of a short-term behavioural alarm generator based on the processing of energy consumption data coming from a commercial smart meter. The device captured data from a household for a period of six months, thus providing the consumption disaggregated per appliance at an interval of one hour. These data were used to train different intelligent systems, capable of estimating the predicted consumption for the next one-hour interval. Four different approaches have been considered and compared when designing the prediction system: a recurrent neural network, a convolutional neural network, a random forest, and a decision tree. By statistically analysing these predictions and the actual final energy consumption measurements, anomalies can be detected in the undertaking of three different daily activities: sleeping, breakfast, and lunch. The recurrent neural network achieves an F1-score of 0.8 in the detection of these anomalies for the household under analysis, outperforming other approaches. The proposal might be applied to the generation of a short-term alarm, which can be involved in future deployments and developments in the field of ambient assisted living.

摘要

近几十年来,大多数西方国家大规模部署智能电表,这使得各种应用程序得以创建和发展,主要与高效能源管理有关。关于能源消耗的信息也被用于社会工作和健康领域。在这种情况下,智能电表被认为是单点非侵入式传感器,可用于监测家庭中居住的人的行为和活动模式。这项工作描述了一种基于商业智能电表的能耗数据处理的短期行为报警生成器的设计。该设备在六个月的时间内从一个家庭捕获数据,从而以每小时一次的间隔提供每个设备的细分能耗。这些数据被用于训练不同的智能系统,这些系统能够估算下一个一小时间隔的预测能耗。在设计预测系统时,考虑并比较了四种不同的方法:递归神经网络、卷积神经网络、随机森林和决策树。通过对这些预测和实际最终能耗测量值进行统计分析,可以检测到三种不同日常活动中的异常情况:睡眠、早餐和午餐。对于所分析的家庭,递归神经网络在检测这些异常情况方面的 F1 得分为 0.8,优于其他方法。该方案可应用于短期报警的生成,这可能涉及到未来在环境辅助生活领域的部署和发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ba/10818482/8c826f64cc1d/sensors-24-00515-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验