Joha Md Ibne, Rahman Md Minhazur, Nazim Md Shahriar, Jang Yeong Min
Department of Electronics Engineering, Kookmin University, Seoul 02707, Republic of Korea.
Sensors (Basel). 2024 Nov 21;24(23):7440. doi: 10.3390/s24237440.
The Industrial Internet of Things (IIoT) revolutionizes both industrial and residential operations by integrating AI (artificial intelligence)-driven analytics with real-time monitoring, optimizing energy usage, and significantly enhancing energy efficiency. This study proposes a secure IIoT framework that simultaneously predicts both active and reactive loads while also incorporating anomaly detection. The system is optimized for real-time deployment on an edge server, such as a single-board computer (SBC), as well as on a cloud or centralized server. It ensures secure and reliable industrial operations by integrating smart data acquisition systems with real-time monitoring, control, and protective measures. We propose a Temporal Convolutional Networks-Gated Recurrent Unit-Attention (TCN-GRU-Attention) model to predict both active and reactive loads, which demonstrates superior performance compared to other conventional models. The performance metrics for active load forecasting are 0.0183 Mean Squared Error (MSE), 0.1022 Mean Absolute Error (MAE), and 0.1354 Root Mean Squared Error (RMSE), while for reactive load forecasting, the metrics are 0.0202 (MSE), 0.1077 (MAE), and 0.1422 (RMSE). Furthermore, we introduce an optimized Isolation Forest model for anomaly detection that considers the transient conditions of appliances when identifying irregular behavior. The model demonstrates very promising performance, with the average performance metrics for all appliances using this Isolation Forest model being 95% for Precision, 98% for Recall, 96% for F1 Score, and nearly 100% for Accuracy. To secure the entire system, Transport Layer Security (TLS) and Secure Sockets Layer (SSL) security protocols are employed, along with hash-encoded encrypted credentials for enhanced protection.
工业物联网(IIoT)通过将人工智能(AI)驱动的分析与实时监测相结合,优化能源使用并显著提高能源效率,从而彻底改变了工业和住宅运营。本研究提出了一种安全的工业物联网框架,该框架能够同时预测有功和无功负载,还能进行异常检测。该系统针对在边缘服务器(如单板计算机(SBC))以及云或集中式服务器上的实时部署进行了优化。它通过将智能数据采集系统与实时监测、控制和保护措施相结合,确保了安全可靠的工业运营。我们提出了一种时间卷积网络-门控循环单元-注意力(TCN-GRU-注意力)模型来预测有功和无功负载,与其他传统模型相比,该模型表现出卓越的性能。有功负载预测的性能指标为均方误差(MSE)0.0183、平均绝对误差(MAE)0.1022和均方根误差(RMSE)0.1354,而无功负载预测的指标分别为0.0202(MSE)、0.1077(MAE)和0.1422(RMSE)。此外,我们引入了一种优化的孤立森林模型用于异常检测,该模型在识别异常行为时考虑了电器的瞬态条件。该模型表现出非常有前景的性能,使用此孤立森林模型的所有电器的平均性能指标为:精确率95%、召回率98%、F1分数96%以及准确率近100%。为了确保整个系统的安全,采用了传输层安全(TLS)和安全套接字层(SSL)安全协议,以及哈希编码的加密凭证以增强保护。