Suppr超能文献

基于无模型深度强化学习的磁微机器人在现实环境中的智能导航

Intelligent Navigation of a Magnetic Microrobot with Model-Free Deep Reinforcement Learning in a Real-World Environment.

作者信息

Salehi Amar, Hosseinpour Soleiman, Tabatabaei Nasrollah, Soltani Firouz Mahmoud, Yu Tingting

机构信息

Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agriculture, University of Tehran, Karaj 31587-77871, Iran.

Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14618-84513, Iran.

出版信息

Micromachines (Basel). 2024 Jan 9;15(1):112. doi: 10.3390/mi15010112.

Abstract

Microrobotics has opened new horizons for various applications, especially in medicine. However, it also witnessed challenges in achieving maximum optimal performance. One key challenge is the intelligent, autonomous, and precise navigation control of microrobots in fluid environments. The intelligence and autonomy in microrobot control, without the need for prior knowledge of the entire system, can offer significant opportunities in scenarios where their models are unavailable. In this study, two control systems based on model-free deep reinforcement learning were implemented to control the movement of a disk-shaped magnetic microrobot in a real-world environment. The training and results of an off-policy SAC algorithm and an on-policy TRPO algorithm revealed that the microrobot successfully learned the optimal path to reach random target positions. During training, the TRPO exhibited a higher sample efficiency and greater stability. The TRPO and SAC showed 100% and 97.5% success rates in reaching the targets in the evaluation phase, respectively. These findings offer basic insights into achieving intelligent and autonomous navigation control for microrobots to advance their capabilities for various applications.

摘要

微型机器人技术为各种应用开辟了新的视野,尤其是在医学领域。然而,在实现最佳性能方面也面临挑战。一个关键挑战是微型机器人在流体环境中的智能、自主和精确导航控制。微型机器人控制中的智能和自主性,无需整个系统的先验知识,在其模型不可用的情况下可以提供重大机会。在本研究中,实现了两种基于无模型深度强化学习的控制系统,以控制圆盘形磁性微型机器人在现实环境中的运动。离策略SAC算法和在线策略TRPO算法的训练和结果表明,微型机器人成功学习到了到达随机目标位置的最优路径。在训练过程中,TRPO表现出更高的样本效率和更大的稳定性。在评估阶段,TRPO和SAC到达目标的成功率分别为100%和97.5%。这些发现为实现微型机器人的智能和自主导航控制提供了基本见解,以提升其在各种应用中的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5105/10818667/0a5eb7e9253b/micromachines-15-00112-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验