Suppr超能文献

诱导多能干细胞衍生血小板的大规模生产迈向临床应用。

Mass production of iPSC-derived platelets toward the clinical application.

作者信息

Kayama Akihiro, Eto Koji

机构信息

Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shōgoin Kawarachō, Sakyo Ward, Kyoto, 606-8397, Japan.

出版信息

Regen Ther. 2024 Jan 4;25:213-219. doi: 10.1016/j.reth.2023.12.009. eCollection 2024 Mar.

Abstract

The production of platelets from induced pluripotent cells (iPSCs) may offer a safer and sustainable alternative for transfusions and drug delivery systems (DDS). However, the mass production of the clinically required number of iPSC-derived platelets (iPSC-PLTs) is challenging. Here, we introduce recent technologies for mass production and the first-in-human clinical trial using iPSC-PLTs. To this end, we established immortalized megakaryocyte progenitor cell lines (imMKCLs) as an expandable master cell bank (MCB) through the overexpression of c-MYC, BMI1 and BCL-XL, which modulated megakaryopoiesis and thrombopoiesis. We also optimized a culture cocktail for maturation of the imMKCLs by mixing an aryl hydrocarbon receptor (AhR) antagonist, SR1/GNF-316; a Rho-associated protein kinase (ROCK) inhibitor, Y-27632/Y-39983; and a small-molecule compound replacing recombinant thrombopoietin (TPO), TA-316. Finally, we discovered the importance of turbulence on the manufacturing of intact iPSC-PLTs, allowing us to develop a turbulence-based bioreactor, VerMES. Combination of the MCB and VerMES enabled us to produce more than 100 billion iPSC-PLTs, leading to the first-in-human clinical trial. Despite these advancements, many challenges remain before expanding the clinical implementation of this strategy.

摘要

从诱导多能干细胞(iPSC)生产血小板可能为输血和药物递送系统(DDS)提供一种更安全、可持续的替代方案。然而,大规模生产临床所需数量的iPSC来源的血小板(iPSC-PLT)具有挑战性。在此,我们介绍了用于大规模生产的最新技术以及使用iPSC-PLT的首次人体临床试验。为此,我们通过过表达c-MYC、BMI1和BCL-XL建立了永生化巨核细胞祖细胞系(imMKCL)作为可扩增的主细胞库(MCB),这些基因调节了巨核细胞生成和血小板生成。我们还通过混合芳烃受体(AhR)拮抗剂SR1/GNF-316、Rho相关蛋白激酶(ROCK)抑制剂Y-27632/Y-39983和替代重组血小板生成素(TPO)的小分子化合物TA-316,优化了用于imMKCL成熟的培养混合物。最后,我们发现了湍流在完整iPSC-PLT制造中的重要性,从而使我们能够开发基于湍流的生物反应器VerMES。MCB和VerMES的结合使我们能够生产超过1000亿个iPSC-PLT,从而促成了首次人体临床试验。尽管取得了这些进展,但在扩大该策略的临床应用之前,仍有许多挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8f/10801197/18111e97d2b5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验