Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA.
Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA.
Cell Rep. 2024 Feb 27;43(2):113683. doi: 10.1016/j.celrep.2024.113683. Epub 2024 Jan 22.
Microglia are implicated as primarily detrimental in pain models; however, they exist across a continuum of states that contribute to homeostasis or pathology depending on timing and context. To clarify the specific contribution of microglia to pain progression, we take advantage of a temporally controlled transgenic approach to transiently deplete microglia. Unexpectedly, we observe complete resolution of pain coinciding with microglial repopulation rather than depletion. We find that repopulated mouse spinal cord microglia are morphologically distinct from control microglia and exhibit a unique transcriptome. Repopulated microglia from males and females express overlapping networks of genes related to phagocytosis and response to stress. We intersect the identified mouse genes with a single-nuclei microglial dataset from human spinal cord to identify human-relevant genes that may ultimately promote pain resolution after injury. This work presents a comprehensive approach to gene discovery in pain and provides datasets for the development of future microglial-targeted therapeutics.
小胶质细胞被认为在疼痛模型中主要是有害的;然而,它们存在于一系列状态中,根据时间和环境的不同,有助于维持体内平衡或导致病理状态。为了阐明小胶质细胞对疼痛进展的确切贡献,我们利用一种时间控制的转基因方法来短暂耗尽小胶质细胞。出乎意料的是,我们观察到疼痛的完全缓解与小胶质细胞的再增殖而不是耗竭相一致。我们发现,来自雄性和雌性小鼠的再增殖脊髓小胶质细胞在形态上与对照小胶质细胞不同,并表现出独特的转录组。雄性和雌性再增殖小胶质细胞表达的与吞噬作用和应激反应相关的基因网络重叠。我们将鉴定的小鼠基因与来自人类脊髓的单个核小胶质细胞数据集进行交叉,以确定人类相关基因,这些基因最终可能在损伤后促进疼痛的缓解。这项工作提出了一种全面的疼痛基因发现方法,并为未来小胶质细胞靶向治疗药物的开发提供了数据集。