Overvig Adam, Mann Sander A, Alù Andrea
Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
Physics Program, Graduate Center of the City University of New York, New York, NY, 10016, USA.
Light Sci Appl. 2024 Jan 24;13(1):28. doi: 10.1038/s41377-023-01350-9.
Diffractive nonlocal metasurfaces have recently opened a broad range of exciting developments in nanophotonics research and applications, leveraging spatially extended-yet locally patterned-resonant modes to control light with new degrees of freedom. While conventional grating responses are elegantly captured by temporal coupled mode theory, current approaches are not well equipped to capture the arbitrary spatial response observed in the nascent field of nonlocal metasurfaces. Here, we introduce spatio-temporal coupled mode theory (STCMT), capable of elegantly capturing the key features of the resonant response of wavefront-shaping nonlocal metasurfaces. This framework can quantitatively guide nonlocal metasurface design while maintaining compatibility with local metasurface frameworks, making it a powerful tool to rationally design and optimize a broad class of ultrathin optical components. We validate this STCMT framework against full-wave simulations of various nonlocal metasurfaces, demonstrating that this tool offers a powerful semi-analytical framework to understand and model the physics and functionality of these devices, without the need for computationally intense full-wave simulations. We also discuss how this model may shed physical insights into nonlocal phenomena in photonics and the functionality of the resulting devices. As a relevant example, we showcase STCMT's flexibility by applying it to study and rapidly prototype nonlocal metasurfaces that spatially shape thermal emission.
衍射非局域超表面最近在纳米光子学研究和应用中开启了一系列令人兴奋的发展,利用空间扩展但局部图案化的共振模式以新的自由度来控制光。虽然传统光栅响应可以通过时间耦合模理论得到很好的描述,但目前的方法并不足以描述在非局域超表面新兴领域中观察到的任意空间响应。在此,我们引入时空耦合模理论(STCMT),它能够很好地描述波前整形非局域超表面共振响应的关键特征。该框架能够在与局域超表面框架保持兼容性的同时,定量地指导非局域超表面设计,使其成为合理设计和优化一大类超薄光学元件的有力工具。我们通过对各种非局域超表面的全波模拟来验证这个STCMT框架,证明该工具提供了一个强大的半解析框架,用于理解和建模这些器件的物理特性和功能,而无需进行计算量大的全波模拟。我们还讨论了这个模型如何能够为光子学中的非局域现象以及所得器件的功能提供物理见解。作为一个相关示例,我们通过将其应用于研究和快速制作空间热发射整形的非局域超表面,展示了STCMT的灵活性。