Suppr超能文献

多变量复发事件数据的回归分析允许时变相关性,并应用于中风登记数据。

Regression analysis of multivariate recurrent event data allowing time-varying dependence with application to stroke registry data.

机构信息

Division of Clinical and Translational Sciences, Department of Internal Medicine the University of Texas McGovern Medical School at Houston, Houston, TX, USA.

Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

Stat Methods Med Res. 2024 Feb;33(2):309-320. doi: 10.1177/09622802231226330. Epub 2024 Jan 23.

Abstract

In multivariate recurrent event data, each patient may repeatedly experience more than one type of event. Analysis of such data gets further complicated by the time-varying dependence structure among different types of recurrent events. The available literature regarding the joint modeling of multivariate recurrent events assumes a constant dependency over time, which is strict and often violated in practice. To close the knowledge gap, we propose a class of flexible shared random effects models for multivariate recurrent event data that allow for time-varying dependence to adequately capture complex correlation structures among different types of recurrent events. We developed an expectation-maximization algorithm for stable and efficient model fitting. Extensive simulation studies demonstrated that the estimators of the proposed approach have satisfactory finite sample performance. We applied the proposed model and the estimating method to data from a cohort of stroke patients identified in the University of Texas Houston Stroke Registry and evaluated the effects of risk factors and the dependence structure of different types of post-stroke readmission events.

摘要

在多变量复发事件数据中,每个患者可能会多次经历多种类型的事件。分析此类数据变得更加复杂,因为不同类型的复发事件之间存在时变的依赖结构。关于多变量复发事件的联合建模的现有文献假设随时间的依赖性是恒定的,这在实践中是严格的,并且经常被违反。为了弥补这一知识差距,我们提出了一类用于多变量复发事件数据的灵活共享随机效应模型,该模型允许时变依赖性来充分捕捉不同类型的复发事件之间的复杂相关结构。我们开发了一种期望最大化算法,用于稳定和有效的模型拟合。广泛的模拟研究表明,所提出方法的估计量在有限样本中具有令人满意的性能。我们将所提出的模型和估计方法应用于德克萨斯大学休斯顿卒中登记处的卒中患者队列数据中,并评估了危险因素和不同类型的卒中后再入院事件的依赖结构的影响。

相似文献

1
Regression analysis of multivariate recurrent event data allowing time-varying dependence with application to stroke registry data.
Stat Methods Med Res. 2024 Feb;33(2):309-320. doi: 10.1177/09622802231226330. Epub 2024 Jan 23.
2
Generalized accelerated recurrence time model for multivariate recurrent event data with missing event type.
Biometrics. 2018 Sep;74(3):954-965. doi: 10.1111/biom.12847. Epub 2018 Feb 9.
3
Semiparametric transformation models for joint analysis of multivariate recurrent and terminal events.
Stat Med. 2011 Nov 10;30(25):3010-23. doi: 10.1002/sim.4306. Epub 2011 Jul 22.
4
A varying-coefficient model for gap times between recurrent events.
Lifetime Data Anal. 2021 Jul;27(3):437-459. doi: 10.1007/s10985-021-09523-7. Epub 2021 May 8.
5
Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death.
Lifetime Data Anal. 2016 Apr;22(2):191-215. doi: 10.1007/s10985-015-9327-y. Epub 2015 May 6.
6
A joint modeling approach for analyzing marker data in the presence of a terminal event.
Biometrics. 2021 Mar;77(1):150-161. doi: 10.1111/biom.13260. Epub 2020 Mar 28.
7
Dynamic regression with recurrent events.
Biometrics. 2019 Dec;75(4):1264-1275. doi: 10.1111/biom.13105. Epub 2019 Sep 12.
8
A Bayesian joint model of recurrent events and a terminal event.
Biom J. 2019 Jan;61(1):187-202. doi: 10.1002/bimj.201700326. Epub 2018 Nov 26.
9
Regression analysis of multivariate recurrent event data with a dependent terminal event.
Lifetime Data Anal. 2010 Oct;16(4):478-90. doi: 10.1007/s10985-010-9158-9. Epub 2010 Mar 10.
10
A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events.
Lifetime Data Anal. 2020 Jul;26(3):471-492. doi: 10.1007/s10985-019-09486-w. Epub 2019 Sep 23.

本文引用的文献

2
Bayesian Autoregressive Frailty Models for Inference in Recurrent Events.
Int J Biostat. 2019 Nov 21;16(1):ijb-2018-0088. doi: 10.1515/ijb-2018-0088.
5
Prediction of Early Recurrence After Acute Ischemic Stroke.
JAMA Neurol. 2016 Apr;73(4):396-401. doi: 10.1001/jamaneurol.2015.4949.
6
Hospital readmissions reduction program.
Circulation. 2015 May 19;131(20):1796-803. doi: 10.1161/CIRCULATIONAHA.114.010270.
7
Dynamic frailty models based on compound birth-death processes.
Biostatistics. 2015 Jul;16(3):550-64. doi: 10.1093/biostatistics/kxv002. Epub 2015 Feb 13.
8
Lowering of blood pressure for recurrent stroke prevention.
Stroke. 2014 Aug;45(8):2506-13. doi: 10.1161/STROKEAHA.114.003666. Epub 2014 Jul 1.
9
Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data.
J Am Stat Assoc. 2004 Dec;99(468):1153-1165. doi: 10.1198/016214504000001033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验