Suppr超能文献

基于复合生死过程的动态衰弱模型。

Dynamic frailty models based on compound birth-death processes.

作者信息

Putter Hein, van Houwelingen Hans C

机构信息

Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands

Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.

出版信息

Biostatistics. 2015 Jul;16(3):550-64. doi: 10.1093/biostatistics/kxv002. Epub 2015 Feb 13.

Abstract

Frailty models are used in survival analysis to model unobserved heterogeneity. They accommodate such heterogeneity by the inclusion of a random term, the frailty, which is assumed to multiply the hazard of a subject (individual frailty) or the hazards of all subjects in a cluster (shared frailty). Typically, the frailty term is assumed to be constant over time. This is a restrictive assumption and extensions to allow for time-varying or dynamic frailties are of interest. In this paper, we extend the auto-correlated frailty models of Henderson and Shimakura and of Fiocco, Putter and van Houwelingen, developed for longitudinal count data and discrete survival data, to continuous survival data. We present a rigorous construction of the frailty processes in continuous time based on compound birth-death processes. When the frailty processes are used as mixtures in models for survival data, we derive the marginal hazards and survival functions and the marginal bivariate survival functions and cross-ratio function. We derive distributional properties of the processes, conditional on observed data, and show how to obtain the maximum likelihood estimators of the parameters of the model using a (stochastic) expectation-maximization algorithm. The methods are applied to a publicly available data set.

摘要

脆弱模型用于生存分析,以对未观察到的异质性进行建模。它们通过纳入一个随机项(即脆弱性)来处理这种异质性,该随机项被假定为乘以个体的风险(个体脆弱性)或群组中所有个体的风险(共享脆弱性)。通常,脆弱项被假定随时间保持恒定。这是一个具有局限性的假设,因此允许时变或动态脆弱性的扩展模型备受关注。在本文中,我们将亨德森和岛村以及菲奥科、普特尔和范豪韦林为纵向计数数据和离散生存数据开发的自相关脆弱模型扩展到连续生存数据。我们基于复合生灭过程给出了连续时间下脆弱过程的严格构建。当将脆弱过程用作生存数据模型中的混合项时,我们推导了边际风险和生存函数以及边际双变量生存函数和交叉比函数。我们推导了以观察到的数据为条件的过程的分布特性,并展示了如何使用(随机)期望最大化算法获得模型参数的最大似然估计值。这些方法应用于一个公开可用的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验