Sun Mengmeng, Yang Shihao, Jiang Jialin, Wang Qianqian, Zhang Li
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany.
Small. 2024 Jun;20(26):e2310769. doi: 10.1002/smll.202310769. Epub 2024 Jan 23.
Inspired by natural swarms, various methods are developed to create artificial magnetic microrobotic collectives. However, these magnetic collectives typically receive identical control inputs from a common external magnetic field, limiting their ability to operate independently. And they often rely on interfaces or boundaries for controlled movement, posing challenges for independent, three-dimensional(3D) navigation of multiple magnetic collectives. To address this challenge, self-assembled microrobotic collectives are proposed that can be selectively actuated in a combination of external magnetic and optical fields. By harnessing both actuation methods, the constraints of single actuation approaches are overcome. The magnetic field excites the self-assembly of colloids and maintains the self-assembled microrobotic collectives without disassembly, while the optical field drives selected microrobotic collectives to perform different tasks. The proposed magnetic-photo microrobotic collectives can achieve independent position and path control in the two-dimensional (2D) plane and 3D space. With this selective control strategy, the microrobotic collectives can cooperate in convection and mixing the dye in a confined space. The results present a systematic approach for realizing selective control of multiple microrobotic collectives, which can address multitasking requirements in complex environments.
受自然群体的启发,人们开发了各种方法来创建人工磁性微型机器人集群。然而,这些磁性集群通常从共同的外部磁场接收相同的控制输入,限制了它们独立运行的能力。而且它们常常依赖界面或边界来进行受控运动,这对多个磁性集群的独立三维(3D)导航构成了挑战。为应对这一挑战,人们提出了自组装微型机器人集群,其可以在外部磁场和光场的组合中被选择性地驱动。通过利用这两种驱动方法,克服了单一驱动方法的限制。磁场激发胶体的自组装并维持自组装的微型机器人集群而不解体,而光场驱动选定的微型机器人集群执行不同任务。所提出的磁光微型机器人集群可以在二维(2D)平面和三维空间中实现独立的位置和路径控制。通过这种选择性控制策略,微型机器人集群可以在受限空间中协同对流并混合染料。研究结果提出了一种实现对多个微型机器人集群进行选择性控制的系统方法,该方法可以满足复杂环境中的多任务需求。
Micromachines (Basel). 2022-11-16
Adv Sci (Weinh). 2019-1-23
Sci Adv. 2022-7-22
Nat Commun. 2022-4-26
Front Bioeng Biotechnol. 2022-4-25
ACS Nano. 2025-7-15
Nat Commun. 2022-11-29
Research (Wash D C). 2022-7-6
Nat Commun. 2022-4-26
ACS Nano. 2021-10-26
Nat Mach Intell. 2021-2
Sci Robot. 2021-3-24