Inpatient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
Br J Radiol. 2024 Jan 23;97(1153):159-167. doi: 10.1093/bjr/tqad006.
To build a predictive model for central lymph node metastasis (CLNM) in unifocal papillary thyroid carcinoma (UPTC) using a combination of clinical features and multimodal ultrasound (MUS).
This retrospective study, included 390 UPTC patients who underwent MUS between January 2017 and October 2022 and were divided into a training cohort (n = 300) and a validation cohort (n = 90) based on a cut-off date of June 2022. Independent indicators for constructing the predictive nomogram models were identified using multivariate regression analysis. The diagnostic yield of the 3 predictive models was also assessed using the area under the receiver operating characteristic curve (AUC).
Both clinical factors (age, diameter) and MUS findings (microcalcification, virtual touch imaging score, maximal value of virtual touch tissue imaging and quantification) were significantly associated with the presence of CLNM in the training cohort (all P < .05). A predictive model (MUS + Clin), incorporating both clinical and MUS characteristics, demonstrated favourable diagnostic accuracy in both the training cohort (AUC = 0.80) and the validation cohort (AUC = 0.77). The MUS + Clin model exhibited superior predictive performance in terms of AUCs over the other models (training cohort 0.80 vs 0.72, validation cohort 0.77 vs 0.65, P < .01). In the validation cohort, the MUS + Clin model exhibited higher sensitivity compared to the CLNM model for ultrasound diagnosis (81.2% vs 21.6%, P < .001), while maintaining comparable specificity to the Clin model alone (62.3% vs 47.2%, P = .06). The MUS + Clin model demonstrated good calibration and clinical utility across both cohorts.
Our nomogram combining non-invasive features, including MUS and clinical characteristics, could be a reliable preoperative tool to predict CLNM treatment of UPTC.
Our study established a nomogram based on MUS and clinical features for predicting CLNM in UPTC, facilitating informed preoperative clinical management and diagnosis.
利用临床特征和多模态超声(MUS)联合构建甲状腺单发乳头状癌(UPTC)中央区淋巴结转移(CLNM)的预测模型。
本回顾性研究纳入了 2017 年 1 月至 2022 年 10 月间接受 MUS 的 390 例 UPTC 患者,根据 2022 年 6 月的截止日期将其分为训练队列(n=300)和验证队列(n=90)。使用多变量回归分析确定构建预测列线图模型的独立指标。使用接收者操作特征曲线下面积(AUC)评估 3 个预测模型的诊断效能。
在训练队列中,临床因素(年龄、直径)和 MUS 发现(微钙化、虚拟触摸成像评分、虚拟触摸组织成像最大值和量化)均与 CLNM 的存在显著相关(均 P<0.05)。包含临床和 MUS 特征的预测模型(MUS+Clin)在训练队列(AUC=0.80)和验证队列(AUC=0.77)中均具有良好的诊断准确性。与其他模型相比,MUS+Clin 模型在 AUC 方面具有更好的预测性能(训练队列 0.80 比 0.72,验证队列 0.77 比 0.65,P<0.01)。在验证队列中,与 CLNM 模型相比,MUS+Clin 模型在超声诊断方面具有更高的敏感性(81.2%比 21.6%,P<0.001),同时与仅 Clin 模型的特异性相当(62.3%比 47.2%,P=0.06)。MUS+Clin 模型在两个队列中均具有良好的校准度和临床实用性。
本研究建立了一个基于 MUS 和临床特征的列线图模型,可作为预测 UPTC 中央区淋巴结转移的可靠术前工具。
本研究基于 MUS 和临床特征建立了预测 UPTC 中央区淋巴结转移的列线图,有助于进行术前临床管理和诊断。