Safran Mejdl, Alrajhi Waleed, Alfarhood Sultan
Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.
Front Plant Sci. 2024 Jan 9;14:1281724. doi: 10.3389/fpls.2023.1281724. eCollection 2023.
Date palm species classification is important for various agricultural and economic purposes, but it is challenging to perform based on images of date palms alone. Existing methods rely on fruit characteristics, which may not be always visible or present. In this study, we introduce a new dataset and a new model for image-based date palm species classification.
Our dataset consists of 2358 images of four common and valuable date palm species (Barhi, Sukkari, Ikhlas, and Saqi), which we collected ourselves. We also applied data augmentation techniques to increase the size and diversity of our dataset. Our model, called DPXception (Date Palm Xception), is a lightweight and efficient CNN architecture that we trained and fine-tuned on our dataset. Unlike the original Xception model, our DPXception model utilizes only the first 100 layers of the Xception model for feature extraction (Adapted Xception), making it more lightweight and efficient. We also applied normalization prior to adapted Xception and reduced the model dimensionality by adding an extra global average pooling layer after feature extraction by adapted Xception.
We compared the performance of our model with seven well-known models: Xception, ResNet50, ResNet50V2, InceptionV3, DenseNet201, EfficientNetB4, and EfficientNetV2-S. Our model achieved the highest accuracy (92.9%) and F1-score (93%) among the models, as well as the lowest inference time (0.0513 seconds). We also developed an Android smartphone application that uses our model to classify date palm species from images captured by the smartphone's camera in real time. To the best of our knowledge, this is the first work to provide a public dataset of date palm images and to demonstrate a robust and practical image-based date palm species classification method. This work will open new research directions for more advanced date palm analysis tasks such as gender classification and age estimation.
海枣品种分类对于各种农业和经济目的都很重要,但仅基于海枣图像进行分类具有挑战性。现有方法依赖于果实特征,而这些特征可能并非总是可见或存在。在本研究中,我们引入了一个新的数据集和一种基于图像的海枣品种分类新模型。
我们的数据集由我们自己收集的四种常见且有价值的海枣品种(巴尔希、苏卡里、伊赫拉斯和萨奇)的2358张图像组成。我们还应用了数据增强技术来增加数据集的规模和多样性。我们的模型名为DPXception(海枣Xception),是一种轻量级且高效的卷积神经网络(CNN)架构,我们在数据集上对其进行了训练和微调。与原始的Xception模型不同,我们的DPXception模型仅利用Xception模型的前100层进行特征提取(适配Xception),从而使其更轻量级且高效。我们还在适配Xception之前应用了归一化,并在适配Xception进行特征提取后添加了一个额外的全局平均池化层来降低模型维度。
我们将我们模型的性能与七个知名模型进行了比较:Xception、ResNet50、ResNet50V2、InceptionV3、DenseNet201、EfficientNetB4和EfficientNetV2 - S。我们的模型在这些模型中实现了最高的准确率(92.9%)和F1分数(93%),以及最短的推理时间(0.0513秒)。我们还开发了一款安卓智能手机应用程序,该应用程序使用我们的模型实时对智能手机摄像头拍摄的图像中的海枣品种进行分类。据我们所知,这是第一项提供海枣图像公共数据集并展示一种强大且实用的基于图像的海枣品种分类方法的工作。这项工作将为更高级的海枣分析任务(如性别分类和年龄估计)开辟新的研究方向。