School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
Comput Biol Med. 2024 Sep;180:108945. doi: 10.1016/j.compbiomed.2024.108945. Epub 2024 Aug 1.
Driver monitoring systems (DMS) are crucial in autonomous driving systems (ADS) when users are concerned about driver/vehicle safety. In DMS, the significant influencing factor of driver/vehicle safety is the classification of driver distractions or activities. The driver's distractions or activities convey meaningful information to the ADS, enhancing the driver/ vehicle safety in real-time vehicle driving. The classification of driver distraction or activity is challenging due to the unpredictable nature of human driving. This paper proposes a convolutional block attention module embedded in Visual Geometry Group (CBAM VGG16) deep learning architecture to improve the classification performance of driver distractions. The proposed CBAM VGG16 architecture is the hybrid network of the CBAM layer with conventional VGG16 network layers. Adding a CBAM layer into a traditional VGG16 architecture enhances the model's feature extraction capacity and improves the driver distraction classification results. To validate the significant performance of our proposed CBAM VGG16 architecture, we tested our model on the American University in Cairo (AUC) distracted driver dataset version 2 (AUCD2) for cameras 1 and 2 images. Our experiment results show that the proposed CBAM VGG16 architecture achieved 98.65% classification accuracy for camera 1 and 97.85% for camera 2 AUCD2 datasets. The CBAM VGG16 architecture also compared the driver distraction classification performance with DenseNet121, Xception, MoblieNetV2, InceptionV3, and VGG16 architectures based on the proposed model's accuracy, loss, precision, F1 score, recall, and confusion matrix. The drivers' distraction classification results indicate that the proposed CBAM VGG16 has 3.7% classification improvements for AUCD2 camera 1 images and 5% for camera 2 images compared to the conventional VGG16 deep learning classification model. We also tested our proposed architecture with different hyperparameter values and estimated the optimal values for best driver distraction classification. The significance of data augmentation techniques for the data diversity performance of the CBAM VGG16 model is also validated in terms of overfitting scenarios. The Grad-CAM visualization of our proposed CBAM VGG16 architecture is also considered in our study, and the results show that VGG16 architecture without CBAM layers is less attentive to the essential parts of the driver distraction images. Furthermore, we tested the effective classification performance of our proposed CBAM VGG16 architecture with the number of model parameters, model size, various input image resolutions, cross-validation, Bayesian search optimization and different CBAM layers. The results indicate that CBAM layers in our proposed architecture enhance the classification performance of conventional VGG16 architecture and outperform the state-of-the-art deep learning architectures.
驾驶员监控系统(DMS)在涉及驾驶员/车辆安全的自动驾驶系统(ADS)中至关重要。在 DMS 中,驾驶员/车辆安全的重要影响因素是驾驶员分心或活动的分类。驾驶员的分心或活动向 ADS 传达了有意义的信息,增强了实时车辆驾驶中的驾驶员/车辆安全性。由于人类驾驶的不可预测性,驾驶员分心或活动的分类具有挑战性。本文提出了一种卷积块注意力模块嵌入视觉几何组(CBAM VGG16)深度学习架构中,以提高驾驶员分心的分类性能。所提出的 CBAM VGG16 架构是 CBAM 层与传统 VGG16 网络层的混合网络。在传统的 VGG16 架构中添加 CBAM 层可增强模型的特征提取能力,并提高驾驶员分心的分类结果。为了验证我们提出的 CBAM VGG16 架构的显著性能,我们在开罗美国大学(AUC)分心驾驶员数据集版本 2(AUCD2)上对摄像头 1 和 2 的图像进行了模型测试。我们的实验结果表明,所提出的 CBAM VGG16 架构在摄像头 1 数据集上的分类准确率为 98.65%,在摄像头 2 数据集上的分类准确率为 97.85%。CBAM VGG16 架构还根据所提出模型的准确性、损失、精度、F1 分数、召回率和混淆矩阵,与 DenseNet121、Xception、MobileNetV2、InceptionV3 和 VGG16 架构进行了驾驶员分心分类性能比较。与传统的 VGG16 深度学习分类模型相比,驾驶员分心分类结果表明,所提出的 CBAM VGG16 架构在 AUCD2 摄像头 1 图像上的分类精度提高了 3.7%,在摄像头 2 图像上的分类精度提高了 5%。我们还使用不同的超参数值测试了我们提出的架构,并估计了最佳驾驶员分心分类的最佳值。还根据过拟合情况验证了数据扩充技术对 CBAM VGG16 模型数据多样性性能的重要性。我们还考虑了对我们提出的 CBAM VGG16 架构的 Grad-CAM 可视化,结果表明,没有 CBAM 层的 VGG16 架构对驾驶员分心图像的重要部分关注度较低。此外,我们还使用模型参数数量、模型大小、各种输入图像分辨率、交叉验证、贝叶斯搜索优化和不同的 CBAM 层测试了我们提出的 CBAM VGG16 架构的有效分类性能。结果表明,所提出架构中的 CBAM 层增强了传统 VGG16 架构的分类性能,并优于最先进的深度学习架构。