阿姆哈拉语版网络成瘾测试-20的验证:一项横断面研究。

Validation of the Amharic version of Internet Addiction Test-20: a cross-sectional study.

作者信息

Feleke Nekatbeb, Mihretu Awoke, Habtamu Kassahun, Amare Beakal, Teferra Solomon

机构信息

Department of Psychiatry, School of Medicine, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.

Department of Psychiatry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

出版信息

Front Psychiatry. 2024 Jan 9;14:1243035. doi: 10.3389/fpsyt.2023.1243035. eCollection 2023.

Abstract

BACKGROUND

Internet Addiction is defined as excessive internet use or poorly controlled preoccupations, impulses, or behaviors related to computer use and internet access that cause impairment or suffering. It had devastating effect on people lives, families, productivity, academic performance and rarely engaging in criminal acts like alcohol use, drug addiction, or compulsive gambling. This study aimed to investigate the psychometric properties of the Amharic version of Internet Addiction Test-20 among Addis Ababa University, College of Health Sciences medical students, Addis Ababa, Ethiopia.

METHODS

A cross sectional study was carried out among 410 medical students using a convenience sampling method after stratifying them based on their year level. SPSS Version 23 was used to do Pearson's correlation coefficient to determine the convergent validity of Amharic version of IAT. We computed correlation coefficient between the aggregate scores of IAT-20 and the scores for depressive symptoms, problematic substance use, and other characteristics of participants which was assessed using Patient health questionnaire-9 (PHQ-9), Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) and questionnaire developed to assess demographic and internet use related characteristics, respectively. AMOS 23 software was used to conduct confirmatory factor analysis (CFA) to evaluate the construct validity of Amharic version of IAT. Test-retest reliability was also determined with 2 weeks interval ( = 51).

RESULTS

The data confirmed a two-factor structure. Normed Fit Index (NFI) = 0.89, Tucker Lewis Index (TLI) = 0.91 and Comparative Fit Index (CFI) = 0.92, Root Mean Square Error Approximation (RMSEA) = 0.07, and Standardized Root Mean Residual (SRMR) =0.05 indicated a good fit model structure. There was moderate positive correlation between the aggregate scores of IAT-20 and PHQ-9 scores ( = 0.55,  < 0.00), but weak positive correlation between IAT-20 and ASSIST scores ( = 0.14,  < 0.00). IAT-20 was also found to have good internal consistency (Cronbach's alpha = 0.89 for each factor). The test-retest reliability was also good for all items (Intra Class Correlation Coefficient (ICC) > 0.30) except item 16.

CONCLUSION

We found that the IAT-20 is psychometrically sound and a simple screening test for Internet Addiction. However, it is important to acknowledge that further studies are necessary to replicate these findings on diverse population.

摘要

背景

网络成瘾被定义为过度使用互联网或对与计算机使用和互联网接入相关的注意力、冲动或行为控制不佳,从而导致损害或痛苦。它对人们的生活、家庭、生产力、学业成绩产生了毁灭性影响,并且很少引发诸如酗酒、吸毒或强迫性赌博等犯罪行为。本研究旨在调查埃塞俄比亚亚的斯亚贝巴大学健康科学学院医学专业学生中阿姆哈拉语版网络成瘾测试 -20 的心理测量特性。

方法

采用便利抽样法,在根据年级分层后的410名医学专业学生中进行了一项横断面研究。使用SPSS 23版软件计算皮尔逊相关系数,以确定阿姆哈拉语版网络成瘾测试的收敛效度。我们计算了网络成瘾测试 -20 的总分与抑郁症状得分、问题物质使用得分以及参与者其他特征得分之间的相关系数,抑郁症状得分使用患者健康问卷 -9(PHQ -9)进行评估,问题物质使用得分使用酒精、吸烟和物质使用参与度筛查测试(ASSIST)进行评估,参与者的人口统计学和互联网使用相关特征得分则通过专门设计的问卷进行评估。使用AMOS 23软件进行验证性因子分析(CFA),以评估阿姆哈拉语版网络成瘾测试的结构效度。还以两周为间隔(n = 51)确定了重测信度。

结果

数据证实了一个双因素结构。规范拟合指数(NFI)= 0.89,塔克 - 刘易斯指数(TLI)= 0.91,比较拟合指数(CFI)= 0.92,均方根误差近似值(RMSEA)= 0.07,标准化均方根残差(SRMR)= 0.05,表明模型结构拟合良好。网络成瘾测试 -20 的总分与PHQ -9得分之间存在中度正相关(r = 0.55,p < 0.00),但网络成瘾测试 -20 与ASSIST得分之间存在弱正相关(r = 0.14,p < 0.00)。还发现网络成瘾测试 -20 具有良好的内部一致性(每个因子的克朗巴哈系数α = 0.89)。除第16项外,所有项目的重测信度也都良好(组内相关系数(ICC)> 0.30)。

结论

我们发现网络成瘾测试 -20 在心理测量方面是可靠的,是一种简单的网络成瘾筛查测试。然而,必须认识到有必要进行进一步研究,以在不同人群中复制这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4d4/10803712/5418de660ccf/fpsyt-14-1243035-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索