Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
Nanoscale. 2024 Feb 15;16(7):3243-3268. doi: 10.1039/d3nr05801h.
A key role in lessening humanity's continuous fight against cancer could be played by photodynamic therapy (PDT), a minimally invasive treatment employed in the medical care of a range of benign disorders and malignancies. Cancerous tissue can be effectively removed by using a light source-excited photosensitizer. Singlet oxygen and reactive oxygen species are produced the photosensitizer as a result of this excitation. In the recent past, researchers have put in tremendous efforts towards developing photosensitizer molecules for photodynamic treatment (PDT) to treat cancer. Conjugated polymers, characterized by their efficient fluorescence, exceptional photostability, and strong light absorption, are currently under scrutiny for their potential applications in cancer detection and treatment through photodynamic and photothermal therapy. Researchers are exploring the versatility of these polymers, utilizing sophisticated chemical synthesis and adaptable polymer structures to create new variants with enhanced capabilities for generating singlet oxygen in photodynamic treatment (PDT). The incorporation of photosensitizers into conjugated polymer nanoparticles has proved to be beneficial, as it improves singlet oxygen formation through effective energy transfer. The evolution of nanotechnology has emerged as an alternative avenue for enhancing the performance of current photosensitizers and overcoming significant challenges in cancer PDT. Various materials, including biocompatible metals, polymers, carbon, silicon, and semiconductor-based nanomaterials, have undergone thorough investigation as potential photosensitizers for cancer PDT. This paper outlines the recent advances in singlet oxygen generation by investigators using an array of materials, including graphene quantum dots (GQDs), gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), titanium dioxide (TiO), ytterbium (Yb) and thulium (Tm) co-doped upconversion nanoparticle cores (Yb/Tm-co-doped UCNP cores), bismuth oxychloride nanoplates and nanosheets (BiOCl nanoplates and nanosheets), and others. It also stresses the synthesis and application of systems such as amphiphilic block copolymer functionalized with folic acid (FA), polyethylene glycol (PEG), poly(β-benzyl-L-aspartate) (PBLA10) (FA-PEG-PBLA10) functionalized with folic acid, tetra(4-hydroxyphenyl)porphyrin (THPP-(PNIPAM--PMAGA)), pyrazoline-fused axial silicon phthalocyanine (HY-SiPc), phthalocyanines (HY-ZnPcp, HY-ZnPcnp, and HY-SiPc), silver nanoparticles coated with polyaniline (Ag@PANI), doxorubicin (DOX) and infrared (IR)-responsive poly(2-ethyl-2-oxazoline) (PEtOx) (DOX/PEtOx-IR NPs), particularly in NIR imaging-guided photodynamic therapy (fluorescent and photoacoustic). The study puts forward a comprehensive summary and a convincing justification for the usage of the above-mentioned materials in cancer PDT.
在与癌症的持续斗争中,光动力疗法(PDT)可以发挥关键作用,它是一种微创治疗方法,用于治疗一系列良性疾病和恶性肿瘤。通过使用光源激发的光敏剂,可以有效去除癌变组织。这种激发会产生单线态氧和活性氧物质。在最近的一段时间里,研究人员为开发用于癌症治疗的光动力治疗(PDT)的光敏剂付出了巨大的努力。共轭聚合物以其高效荧光、出色的光稳定性和强吸光性为特点,目前正在受到关注,因为它们有可能通过光动力和光热疗法应用于癌症检测和治疗。研究人员正在探索这些聚合物的多功能性,利用复杂的化学合成和可适应的聚合物结构来创造新的变体,以提高在 PDT 中产生单线态氧的能力。将光敏剂掺入共轭聚合物纳米粒子中已被证明是有益的,因为它可以通过有效的能量转移来提高单线态氧的形成。纳米技术的发展已成为增强现有光敏剂性能和克服癌症 PDT 中重大挑战的一种替代途径。包括生物相容性金属、聚合物、碳、硅和基于半导体的纳米材料在内的各种材料已被彻底研究,作为癌症 PDT 的潜在光敏剂。本文概述了研究人员使用各种材料(包括石墨烯量子点(GQD)、金纳米粒子(AuNP)、银纳米粒子(AgNP)、二氧化钛(TiO)、镱(Yb)和铥(Tm)共掺杂上转换纳米颗粒核(Yb/Tm-共掺杂 UCNP 核)、氯化氧铋纳米板和纳米片(BiOCl 纳米板和纳米片)等)产生单线态氧的最新进展。它还强调了系统的合成和应用,如叶酸(FA)、聚乙二醇(PEG)、聚(β-苄基-L-天冬氨酸)(PBLA10)(FA-PEG-PBLA10)功能化的两亲性嵌段共聚物、四(4-羟基苯基)卟啉(THPP-(PNIPAM--PMAGA))、吡唑啉并轴硅酞菁(HY-SiPc)、酞菁(HY-ZnPcp、HY-ZnPcnp 和 HY-SiPc)、聚苯胺(Ag@PANI)包银纳米粒子、阿霉素(DOX)和红外(IR)响应聚(2-乙基-2-恶唑啉)(PEtOx)(DOX/PEtOx-IR NPs),特别是在近红外成像引导的光动力治疗(荧光和光声)中。该研究提出了一个全面的总结,并为上述材料在癌症 PDT 中的应用提供了令人信服的理由。
Eur J Pharm Biopharm. 2023-3
Chem Soc Rev. 2016-10-5
Macromol Rapid Commun. 2017-12-18
Front Drug Deliv. 2024-3-4
RSC Adv. 2025-6-25
Chemistry. 2025-7-11
Front Bioeng Biotechnol. 2025-5-27
Chemistry. 2025-6-12
Mol Biomed. 2025-4-7