Suppr超能文献

群体感应淬灭菌 Rhodococcus sp. BH4 的碳代谢特性决定了不同碳源条件下的生物增强效率。

Carbon metabolism characteristics of quorum quenching bacteria Rhodococcus sp. BH4 determine the bioaugmentation efficiency under different carbon source conditions.

机构信息

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Pingleyuan 100, Chaoyang, Beijing 100124, China.

China Urban Construction Design & Research Institute CO., LTD. Beijing 100120, China.

出版信息

Water Res. 2024 Mar 1;251:121168. doi: 10.1016/j.watres.2024.121168. Epub 2024 Jan 19.

Abstract

Carbon sources are critical factors influencing bacterial bioaugmentation, however, the underlying mechanisms, particularly the metabolic characteristics of bioaugmented bacteria remain poorly understood. The bioaugmented bacterium Rhodococcus sp. BH4 secretes the quorum quenching (QQ) enzyme QsdA to disrupt the quorum sensing (QS) in the activated sludge (AS) process, reducing AS yield in-situ. This study investigated the carbon metabolic characteristics of BH4 and explored the effects on bioaugmentation with different influent carbon sources. Because of the absence of glucose-specific phosphoenol phosphotransferase system (PTS), BH4 prefers sodium acetate to glucose. However, the lactones produced during extracellular glucose metabolism enhance BH4 qsdA expression. Moreover, BH4 possess carbon catabolite repression (CCR), acetate inhibits glucose utilization. BH4 microbeads were added to reactors with different carbon sources (R1: sodium acetate; R2: glucose; R3: a mixture of sodium acetate and glucose) for in-situ AS yield reduction. During operation, AS reduction efficiency decreased in the following order: R1 > R3 > R2. R2 and R3 microbeads exhibited similar QQ activity to R1, with less BH4 biomass at 5 d. C labeling and Michaelis-Menten equation showed that, due to differences in the competitiveness of carbon sources, R1 BH4 obtained the most carbon, whereas R2 BH4 obtained the least carbon. Moreover, acetate inhibited glucose utilization of R3 BH4. Transcriptome analysis showed that R1 BH4 qsdA expression was the lowest, R2 BH4 was the most serious form of programmed cell death, and the R3 BH4 PTS pathway was inhibited. At 10 d, R1 BH4 biomass and microbead QQ activity were higher than that in R3, and the R2 BH4 lost viability and QQ activity. This study provides new insights into bioaugmentation from the perspectives of carbon source competitiveness, carbon metabolism pathways, and CCR.

摘要

碳源是影响细菌生物增强的关键因素,然而,其潜在机制,尤其是生物增强细菌的代谢特征仍知之甚少。生物增强细菌 Rhodococcus sp. BH4 分泌群体感应淬灭 (QQ) 酶 QsdA 来破坏活性污泥 (AS) 过程中的群体感应 (QS),从而减少原位 AS 产量。本研究调查了 BH4 的碳代谢特征,并探讨了不同进水碳源对生物增强的影响。由于缺乏葡萄糖特异性磷酸烯醇式丙酮酸转移酶系统 (PTS),BH4 更喜欢乙酸钠而不是葡萄糖。然而,胞外葡萄糖代谢过程中产生的内酯会增强 BH4 qsdA 的表达。此外,BH4 具有碳分解代谢物阻遏 (CCR),乙酸抑制葡萄糖的利用。将 BH4 微球添加到具有不同碳源的反应器中(R1:乙酸钠;R2:葡萄糖;R3:乙酸钠和葡萄糖混合物)以减少原位 AS 产量。在运行过程中,AS 减少效率按以下顺序降低:R1>R3>R2。R2 和 R3 微球与 R1 具有相似的 QQ 活性,但在第 5 天 BH4 生物量较少。C 标记和米氏方程表明,由于碳源的竞争力差异,R1 BH4 获得了最多的碳,而 R2 BH4 获得了最少的碳。此外,乙酸抑制了 R3 BH4 对葡萄糖的利用。转录组分析表明,R1 BH4 qsdA 的表达最低,R2 BH4 是最严重的程序性细胞死亡形式,而 R3 BH4 的 PTS 途径受到抑制。在第 10 天,R1 BH4 生物量和微球 QQ 活性高于 R3,而 R2 BH4 失去了活力和 QQ 活性。本研究从碳源竞争力、碳代谢途径和 CCR 的角度为生物增强提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验