Firat University, Department of Environmental Engineering, Elazig, 23119, Turkey.
Chemosphere. 2021 Dec;285:131538. doi: 10.1016/j.chemosphere.2021.131538. Epub 2021 Jul 12.
Anode biofilm thickness is a key point for high and sustainable power generation in microbial fuel cells (MFCs). Over time, the formation of a thicker biofilm on anode electrode hinders the power generation performance of MFC by causing a longer electron transfer path and the accumulation of undesirable components in anode biofilm. To overcome these limitations, we used a novel strategy named quorum quenching (QQ) for the first time in order to control the biofilm thickness on the anode surface by inactivation of signal molecules among microorganisms. For this purpose, the isolated QQ bacteria (Rhodococcus sp. BH4) were immobilized into alginate beads (20, 40, and 80 mg/10 ml sodium alginate) and added to the anode chamber of MFCs. The MFC exhibited the best electrochemical activity (1924 mW m) with a biofilm thickness of 26 μm at 40 mg Rhodococcus sp. BH4/10 ml sodium alginate. The inhibition of signal molecules in anode chamber reduced the production of extracellular polymeric substance (EPS) by preventing microbial communication amonganode microorganisms. Microscopic observations revealed that anode biofilm thickness and the abundance of dead bacteria significantly decreased with an increase in Rhodococcus sp. BH4 concentration in MFCs. Microbiome diversity showed an apparent difference among the microbial community structures of anode biofilms in MFCs containing vacant and Rhodococcus sp. BH4 beads. The data revealed that the QQ strategy is an efficient application for improving MFC performance and may shed light on future studies.
阳极生物膜厚度是微生物燃料电池(MFC)实现高效可持续发电的关键。随着时间的推移,阳极电极上形成较厚的生物膜会阻碍 MFC 的发电性能,因为这会导致电子传递路径更长,并在阳极生物膜中积累不良成分。为了克服这些限制,我们首次使用了一种名为群体感应淬灭(Quorum Quenching,QQ)的新策略,通过失活微生物之间的信号分子来控制阳极表面的生物膜厚度。为此,我们将分离到的 QQ 细菌(Rhodococcus sp. BH4)固定在海藻酸钠珠(20、40 和 80 mg/10 ml 海藻酸钠)中,并添加到 MFC 的阳极室中。结果显示,在 40 mg Rhodococcus sp. BH4/10 ml 海藻酸钠条件下,MFC 表现出最佳的电化学活性(1924 mW m),同时具有 26 μm 的生物膜厚度。阳极室中信号分子的抑制作用通过阻止阳极微生物之间的微生物通讯,减少了细胞外聚合物(EPS)的产生。显微镜观察结果表明,随着 MFC 中 Rhodococcus sp. BH4 浓度的增加,阳极生物膜厚度和死细菌的丰度显著降低。微生物组多样性分析显示,含有空珠和 Rhodococcus sp. BH4 珠的 MFC 中阳极生物膜的微生物群落结构存在明显差异。这些数据表明,QQ 策略是一种提高 MFC 性能的有效应用,可能为未来的研究提供启示。