Suppr超能文献

咀嚼肌横截面积预测健康老年人肌肉减少症的可行性。

Feasibility of using cross-sectional area of masticatory muscles to predict sarcopenia in healthy aging subjects.

机构信息

School of Dental Medicine, Center for Diagnostic Imaging, University of Belgrade, 6 Rankeova, 11000, Belgrade, Republic of Serbia.

School of Dental Medicine, Department of Statistics, University of Belgrade, 2 dr Subotića, 11000, Belgrade, Republic of Serbia.

出版信息

Sci Rep. 2024 Jan 24;14(1):2079. doi: 10.1038/s41598-024-51589-4.

Abstract

Determination of sarcopenia is crucial in identifying patients at high risk of adverse health outcomes. Recent studies reported a significant decline in masticatory muscle (MM) function in patients with sarcopenia. This study aimed to analyze the cross-sectional area (CSA) of MMs on computed tomography (CT) images and to explore their potential to predict sarcopenia. The study included 149 adult subjects retrospectively (59 males, 90 females, mean age 57.4 ± 14.8 years) who underwent head and neck CT examination for diagnostic purposes. Sarcopenia was diagnosed on CT by measuring CSA of neck muscles at the C3 vertebral level and estimating skeletal muscle index. CSA of MMs (temporal, masseter, medial pterygoid, and lateral pterygoid) were measured bilaterally on reference CT slices. Sarcopenia was diagnosed in 67 (45%) patients. Univariate logistic regression analysis demonstrated a significant association between CSA of all MMs and sarcopenia. In the multivariate logistic regression model, only masseter CSA, lateral pterygoid CSA, age, and gender were marked as predictors of sarcopenia. These parameters were combined in a regression equation, which showed excellent sensitivity and specificity in predicting sarcopenia. The masseter and lateral pterygoid CSA can be used to predict sarcopenia in healthy aging subjects with a high accuracy.

摘要

肌少症的确定对于识别高健康风险的患者至关重要。最近的研究报告称,肌少症患者的咀嚼肌(MM)功能明显下降。本研究旨在分析 CT 图像上 MM 的横截面积(CSA),并探讨其预测肌少症的潜力。该研究回顾性纳入了 149 名成年受试者(59 名男性,90 名女性,平均年龄 57.4±14.8 岁),他们因诊断目的接受了头颈部 CT 检查。通过测量 C3 椎体水平颈部肌肉的 CSA 并估计骨骼肌指数,在 CT 上诊断肌少症。在参考 CT 切片上双侧测量 MM(颞肌、咬肌、翼内肌和翼外肌)的 CSA。67 名(45%)患者被诊断为肌少症。单因素逻辑回归分析表明,所有 MM 的 CSA 与肌少症之间存在显著关联。在多因素逻辑回归模型中,只有咬肌 CSA、翼外肌 CSA、年龄和性别被标记为肌少症的预测因子。这些参数被组合在回归方程中,该方程在预测肌少症方面具有出色的敏感性和特异性。咬肌和翼外肌 CSA 可用于预测健康老年人群的肌少症,具有较高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ab/10808244/910dc32d6b38/41598_2024_51589_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验