Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany.
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Nature. 2024 Jan;625(7996):673-678. doi: 10.1038/s41586-023-06910-y. Epub 2024 Jan 24.
Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s2p J = 2 → 1s2s J = 1 intrashell transition in the heaviest two-electron ion (U) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.
量子电动力学(QED)是描述光与物质相互作用的量子场论,通常被认为是现代物理学中经过最充分检验的量子理论。然而,这一说法主要基于在相对较低的场强和轻原子及离子领域进行的极其精确的研究。在非常强的电磁场中,如在最重的高离化态离子(核电荷 Z≫1)中,QED 计算进入了一个定性上不同的、非微扰的区域。然而,相应的实验研究极具挑战性,理论预测也只得到了部分验证。在这里,我们展示了一项对高 Z 区高阶 QED 效应和电子-电子相互作用敏感的实验。这是通过使用基于多普勒调谐 X 射线发射的多参考方法实现的,所涉及的 X 射线发射来自于具有不同电荷态的相对论性铀离子的存储。通过这种方法,我们以 37ppm 的精度获得了最重的双电子离子(U)中 1s2pJ=2→1s2sJ=1 壳层内跃迁的能量。此外,对具有不同束缚电子数的铀离子进行比较,使我们能够分离并分别测试单电子高阶 QED 效应和束缚电子-电子相互作用项,而无需考虑核半径的不确定性。此外,我们的实验结果可以区分几种最先进的理论方法,并为强场域的计算提供了一个重要的基准。