Suppr超能文献

基于表面肌电信号的上下肢协调运动意图识别方法研究

Research on the method of identifying upper and lower limb coordinated movement intentions based on surface EMG signals.

作者信息

Feng Yongfei, Yu Long, Dong Fangyan, Zhong Mingwei, Pop Abigail Alexa, Tang Min, Vladareanu Luigi

机构信息

Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China.

Academy for Engineering and Technology, Fudan University, Shanghai, China.

出版信息

Front Bioeng Biotechnol. 2024 Jan 10;11:1349372. doi: 10.3389/fbioe.2023.1349372. eCollection 2023.

Abstract

Rehabilitation robots have gained considerable focus in recent years, aiming to assist immobilized patients in regaining motor capabilities in their limbs. However, most current rehabilitation robots are designed specifically for either upper or lower limbs. This limits their ability to facilitate coordinated movement between upper and lower limbs and poses challenges in accurately identifying patients' intentions for multi-limbs coordinated movement. This research presents a multi-postures upper and lower limb cooperative rehabilitation robot (U-LLCRR) to address this gap. Additionally, the study proposes a method that can be adjusted to accommodate multi-channel surface electromyographic (sEMG) signals. This method aims to accurately identify upper and lower limb coordinated movement intentions during rehabilitation training. By using genetic algorithms and dissimilarity evaluation, various features are optimized. The Sine-BWOA-LSSVM (SBL) classification model is developed using the improved Black Widow Optimization Algorithm (BWOA) to enhance the performance of the Least Squares Support Vector Machine (LSSVM) classifier. Discrete movement recognition studies are conducted to validate the exceptional precision of the SBL classification model in limb movement recognition, achieving an average accuracy of 92.87%. Ultimately, the U-LLCRR undergoes online testing to evaluate continuous motion, specifically the movements of "Marching in place with arm swinging". The results show that the SBL classification model maintains high accuracy in recognizing continuous motion intentions, with an average identification rate of 89.25%. This indicates its potential usefulness in future rehabilitation robot-active training methods, which will be a promising tool for a wide range of applications in the fields of healthcare, sports, and beyond.

摘要

近年来,康复机器人受到了广泛关注,旨在帮助肢体 immobilized 患者恢复肢体运动能力。然而,目前大多数康复机器人都是专门为上肢或下肢设计的。这限制了它们促进上肢和下肢之间协调运动的能力,并在准确识别患者多肢体协调运动意图方面带来了挑战。本研究提出了一种多姿势上肢和下肢协同康复机器人(U-LLCRR)来弥补这一差距。此外,该研究还提出了一种可调整以适应多通道表面肌电(sEMG)信号的方法。该方法旨在准确识别康复训练期间上肢和下肢的协调运动意图。通过使用遗传算法和差异评估,对各种特征进行了优化。利用改进的黑寡妇优化算法(BWOA)开发了正弦-BWOA-LSSVM(SBL)分类模型,以提高最小二乘支持向量机(LSSVM)分类器的性能。进行了离散运动识别研究,以验证SBL分类模型在肢体运动识别中的卓越精度,平均准确率达到92.87%。最终,对U-LLCRR进行了在线测试,以评估连续运动,特别是“手臂摆动原地踏步”的运动。结果表明,SBL分类模型在识别连续运动意图方面保持了较高的准确率,平均识别率为89.25%。这表明它在未来康复机器人主动训练方法中具有潜在的实用性,将成为医疗保健、体育等领域广泛应用的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21d4/10806064/21349e99183d/fbioe-11-1349372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验