Suppr超能文献

基于机器学习的动力踝足矫形器与功能性电刺激协同控制步态

Machine-learning-based coordination of powered ankle-foot orthosis and functional electrical stimulation for gait control.

作者信息

Jung Suhun, Bong Jae Hwan, Kim Keri, Park Shinsuk

机构信息

Artificial Intelligence and Robot Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.

Department of Human Intelligence Robot Engineering, Sangmyung University, Cheonan-si, Republic of Korea.

出版信息

Front Bioeng Biotechnol. 2024 Jan 10;11:1272693. doi: 10.3389/fbioe.2023.1272693. eCollection 2023.

Abstract

This study proposes a novel gait rehabilitation method that uses a hybrid system comprising a powered ankle-foot orthosis (PAFO) and FES, and presents its coordination control. The developed system provides assistance to the ankle joint in accordance with the degree of volitional participation of patients with post-stroke hemiplegia. The PAFO adopts the desired joint angle and impedance profile obtained from biomechanical simulation. The FES patterns of the tibialis anterior and soleus muscles are derived from predetermined electromyogram patterns of healthy individuals during gait and personalized stimulation parameters. The CNN-based estimation model predicts the volitional joint torque from the electromyogram of the patient, which is used to coordinate the contributions of the PAFO and FES. The effectiveness of the developed hybrid system was tested on healthy individuals during treadmill walking with and without considering the volitional muscle activity of the individual. The results showed that consideration of the volitional muscle activity significantly lowers the energy consumption by the PAFO and FES while providing adaptively assisted ankle motion depending on the volitional muscle activities of the individual. The proposed system has potential use as an assist-as-needed rehabilitation system, where it can improve the outcome of gait rehabilitation by inducing active patient participation depending on the stage of rehabilitation.

摘要

本研究提出了一种新颖的步态康复方法,该方法使用一种由动力踝足矫形器(PAFO)和功能性电刺激(FES)组成的混合系统,并介绍了其协调控制。所开发的系统根据中风后偏瘫患者的自主参与程度为踝关节提供辅助。PAFO采用从生物力学模拟中获得的期望关节角度和阻抗曲线。胫前肌和比目鱼肌的FES模式源自健康个体在步态期间预先确定的肌电图模式以及个性化刺激参数。基于卷积神经网络(CNN)的估计模型根据患者的肌电图预测自主关节扭矩,该扭矩用于协调PAFO和FES的作用。在跑步机行走过程中,在考虑和不考虑个体自主肌肉活动的情况下,对健康个体测试了所开发混合系统的有效性。结果表明,考虑自主肌肉活动可显著降低PAFO和FES的能量消耗,同时根据个体的自主肌肉活动提供适应性辅助踝关节运动。所提出的系统具有作为按需辅助康复系统的潜在用途,在该系统中,它可以根据康复阶段促使患者积极参与,从而改善步态康复的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8903/10806132/68985f3baae6/fbioe-11-1272693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验