Suppr超能文献

在收获鼠中发声的解剖结构和机制。

Anatomy and mechanisms of vocal production in harvest mice.

机构信息

Department of Physiology, Midwestern University Glendale, Glendale, AZ 85308, USA.

Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.

出版信息

J Exp Biol. 2024 Mar 1;227(5). doi: 10.1242/jeb.246553.

Abstract

Characterizing mechanisms of vocal production provides important insight into the ecology of acoustic divergence. In this study, we characterized production mechanisms of two types of vocalizations emitted by western harvest mice (Reithrodontomys megalotis), a species uniquely positioned to inform trait evolution because it is a sister taxon to peromyscines (Peromyscus and Onychomys spp.), which use vocal fold vibrations to produce long-distance calls, but more ecologically and acoustically similar to baiomyines (Baiomys and Scotinomys spp.), which employ a whistle mechanism. We found that long-distance calls (∼10 kHz) were produced by airflow-induced vocal fold vibrations, whereas high-frequency quavers used in close-distance social interactions (∼80 kHz) were generated by a whistle mechanism. Both production mechanisms were facilitated by a characteristic laryngeal morphology. Our findings indicate that the use of vocal fold vibrations for long-distance communication is widespread in reithrodontomyines (Onychomys, Peromyscus, Reithrodontomys spp.) despite overlap in frequency content that characterizes baiomyine whistled vocalizations. The results illustrate how different production mechanisms shape acoustic variation in rodents and contribute to ecologically relevant communication distances.

摘要

对发声机制的研究为声学分歧的生态提供了重要的见解。在本研究中,我们对两种发声方式的发声机制进行了描述,这两种发声方式由西部收获鼠(Reithrodontomys megalotis)发出,该物种在告知特征进化方面具有独特的地位,因为它是白足鼠(Peromyscus 和 Onychomys spp.)的姐妹分类群,而白足鼠通过声带振动产生远距离叫声,但与更具生态相似性和声学相似性的 baiomyines(Baiomys 和 Scotinomys spp.)相比,baiomyines 使用口哨机制。我们发现远距离叫声(约 10 kHz)是由气流引起的声带振动产生的,而在近距离社交互动中使用的高频 quavers(约 80 kHz)是由口哨机制产生的。这两种发声机制都得益于一种特征性的喉部形态。我们的研究结果表明,尽管 baiomyine 的哨声叫声在频率内容上存在重叠,但在 reithrodontomyines(Onychomys、Peromyscus、Reithrodontomys spp.)中,声带振动用于远距离通讯是广泛存在的。这些结果说明了不同的发声机制如何塑造啮齿动物的声学变化,并为生态相关的通讯距离做出贡献。

相似文献

1
Anatomy and mechanisms of vocal production in harvest mice.
J Exp Biol. 2024 Mar 1;227(5). doi: 10.1242/jeb.246553.
2
Mechanisms of sound production in deer mice (Peromyscus spp.).
J Exp Biol. 2022 May 1;225(9). doi: 10.1242/jeb.243695. Epub 2022 May 12.
3
Grasshopper mice employ distinct vocal production mechanisms in different social contexts.
Proc Biol Sci. 2017 Jul 26;284(1859). doi: 10.1098/rspb.2017.1158.
4
Pygmy mouse songs reveal anatomical innovations underlying acoustic signal elaboration in rodents.
J Exp Biol. 2020 Jun 26;223(Pt 12):jeb223925. doi: 10.1242/jeb.223925.
5
A comparative characterization of laryngeal anatomy in the singing mouse.
J Anat. 2021 Feb;238(2):308-320. doi: 10.1111/joa.13315. Epub 2020 Sep 29.
9
Two pup vocalization types are genetically and functionally separable in deer mice.
Curr Biol. 2023 Apr 10;33(7):1237-1248.e4. doi: 10.1016/j.cub.2023.02.045. Epub 2023 Mar 8.
10
Mice produce ultrasonic vocalizations by intra-laryngeal planar impinging jets.
Curr Biol. 2016 Oct 10;26(19):R880-R881. doi: 10.1016/j.cub.2016.08.032.

引用本文的文献

1
How to analyse and manipulate nonlinear phenomena in voice recordings.
Philos Trans R Soc Lond B Biol Sci. 2025 Apr 3;380(1923):20240003. doi: 10.1098/rstb.2024.0003.
2
Application of nonlinear dynamics theory to understanding normal and pathologic voices in humans.
Philos Trans R Soc Lond B Biol Sci. 2025 Apr 3;380(1923):20240018. doi: 10.1098/rstb.2024.0018.
3
Dendritic alterations precede age-related dysphagia and nucleus ambiguus motor neuron death.
J Physiol. 2025 Mar;603(5):1299-1321. doi: 10.1113/JP287457. Epub 2025 Jan 27.

本文引用的文献

1
Contribution of the ventral pouch in the production of mouse ultrasonic vocalizations.
Phys Rev E. 2023 Feb;107(2-1):024412. doi: 10.1103/PhysRevE.107.024412.
2
Physical modeling of the vocal membranes and their influence on animal voice production.
JASA Express Lett. 2022 Nov;2(11):111201. doi: 10.1121/10.0015071.
3
Mechanisms of sound production in deer mice (Peromyscus spp.).
J Exp Biol. 2022 May 1;225(9). doi: 10.1242/jeb.243695. Epub 2022 May 12.
4
Pygmy mouse songs reveal anatomical innovations underlying acoustic signal elaboration in rodents.
J Exp Biol. 2020 Jun 26;223(Pt 12):jeb223925. doi: 10.1242/jeb.223925.
5
Vocal divergence is concordant with genomic evidence for strong reproductive isolation in grasshopper mice ().
Ecol Evol. 2019 Nov 6;9(22):12886-12896. doi: 10.1002/ece3.5770. eCollection 2019 Nov.
6
Vocal state change through laryngeal development.
Nat Commun. 2019 Oct 9;10(1):4592. doi: 10.1038/s41467-019-12588-6.
7
2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education.
J Mammal. 2016 Jun 9;97(3):663-688. doi: 10.1093/jmammal/gyw078. Epub 2016 May 28.
8
Laryngeal airway reconstruction indicates that rodent ultrasonic vocalizations are produced by an edge-tone mechanism.
R Soc Open Sci. 2017 Nov 1;4(11):170976. doi: 10.1098/rsos.170976. eCollection 2017 Nov.
9
Grasshopper mice employ distinct vocal production mechanisms in different social contexts.
Proc Biol Sci. 2017 Jul 26;284(1859). doi: 10.1098/rspb.2017.1158.
10
Mechanics of human voice production and control.
J Acoust Soc Am. 2016 Oct;140(4):2614. doi: 10.1121/1.4964509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验