Suppr超能文献

自动化糖尿病视网膜病变诊断,改善临床决策支持。

Automated Diabetic Retinopathy Diagnosis for Improved Clinical Decision Support.

机构信息

CSIRO, Australian E-Health Research Centre.

出版信息

Stud Health Technol Inform. 2024 Jan 25;310:1490-1491. doi: 10.3233/SHTI231259.

Abstract

We report on the prediction performance of artificial intelligence components embedded into a telehealth platform underlying a newly established eye screening service connecting metropolitan-based ophthalmologists to patients in remote indigenous communities in Northern Territory and Queensland. Two AI-based components embedded into the telehealth platform were evaluated on retinal images collected from 328 unique patients: an image quality alert system and a diabetic retinopathy detection system. Compared to ophthalmologists, at an individual image level, the image quality detection algorithm was correct 72% of the time, and 85% accurate at a patient level. The retinopathy detection algorithm was correct 85% accurate at an individual image level, and 87% accurate at a patient level. This evaluation provides assurances for future service models using AI to complement and support decisions of eye health assessment teams.

摘要

我们报告了人工智能组件在远程医疗平台中的预测性能,该平台是为连接位于北领地和昆士兰州偏远土著社区的大都市眼科医生和患者而新建立的眼部筛查服务的基础。在从 328 位独特患者中收集的视网膜图像上,评估了嵌入远程医疗平台的两个基于人工智能的组件:图像质量警报系统和糖尿病性视网膜病变检测系统。与眼科医生相比,在单个图像级别上,图像质量检测算法的正确率为 72%,在患者级别上的准确率为 85%。视网膜病变检测算法在单个图像级别上的准确率为 85%,在患者级别上的准确率为 87%。这项评估为未来使用人工智能来补充和支持眼健康评估团队决策的服务模型提供了保证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验