文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的眼底照相和光相干断层扫描双模态分析在社区医院糖尿病视网膜病变筛查中的应用。

Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital.

机构信息

Department of Ophthalmology, Shanghai Jing'an District Shibei Hospital, 4500, Gonghexin Road, Jing'an, Shanghai, 200443, China.

Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.

出版信息

Biomed Eng Online. 2022 Jul 20;21(1):47. doi: 10.1186/s12938-022-01018-2.


DOI:10.1186/s12938-022-01018-2
PMID:35859144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9301845/
Abstract

BACKGROUND: To assess the feasibility and clinical utility of artificial intelligence (AI)-based screening for diabetic retinopathy (DR) and macular edema (ME) by combining fundus photos and optical coherence tomography (OCT) images in a community hospital. METHODS: Fundus photos and OCT images were taken for 600 diabetic patients in a community hospital. Ophthalmologists graded these fundus photos according to the International Clinical Diabetic Retinopathy (ICDR) Severity Scale as the ground truth. Two existing trained AI models were used to automatically classify the fundus images into DR grades according to ICDR, and to detect concomitant ME from OCT images, respectively. The criteria for referral were DR grades 2-4 and/or the presence of ME. The sensitivity and specificity of AI grading were evaluated. The number of referable DR cases confirmed by ophthalmologists and AI was calculated, respectively. RESULTS: DR was detected in 81 (13.5%) participants by ophthalmologists and in 94 (15.6%) by AI, and 45 (7.5%) and 53 (8.8%) participants were diagnosed with referable DR by ophthalmologists and by AI, respectively. The sensitivity, specificity and area under the curve (AUC) of AI for detecting DR were 91.67%, 96.92% and 0.944, respectively. For detecting referable DR, the sensitivity, specificity and AUC of AI were 97.78%, 98.38% and 0.981, respectively. ME was detected from OCT images in 49 (8.2%) participants by ophthalmologists and in 57 (9.5%) by AI, and the sensitivity, specificity and AUC of AI were 91.30%, 97.46% and 0.944, respectively. When combining fundus photos and OCT images, the number of referrals identified by ophthalmologists increased from 45 to 75 and from 53 to 85 by AI. CONCLUSION: AI-based DR screening has high sensitivity and specificity and may feasibly improve the referral rate of community DR.

摘要

背景:在社区医院中,通过结合眼底照片和光相干断层扫描(OCT)图像,评估基于人工智能(AI)的糖尿病视网膜病变(DR)和黄斑水肿(ME)筛查的可行性和临床实用性。

方法:对社区医院的 600 名糖尿病患者进行眼底照相和 OCT 检查。眼科医生根据国际临床糖尿病视网膜病变(ICDR)严重程度分级标准对这些眼底照片进行分级,作为金标准。使用两种现有的训练有素的 AI 模型,根据 ICDR 自动将眼底图像分类为 DR 分级,并分别从 OCT 图像中检测并发 ME。转诊标准为 DR 分级 2-4 级和/或存在 ME。评估 AI 分级的敏感性和特异性。分别计算眼科医生和 AI 确定的可转诊 DR 病例数。

结果:眼科医生在 81 名(13.5%)参与者中发现 DR,在 94 名(15.6%)参与者中发现 AI,45 名(7.5%)和 53 名(8.8%)参与者被眼科医生和 AI 诊断为可转诊 DR。AI 检测 DR 的敏感性、特异性和曲线下面积(AUC)分别为 91.67%、96.92%和 0.944。对于检测可转诊 DR,AI 的敏感性、特异性和 AUC 分别为 97.78%、98.38%和 0.981。眼科医生从 49 名(8.2%)参与者的 OCT 图像中发现 ME,AI 从 57 名(9.5%)参与者的 OCT 图像中发现 ME,AI 的敏感性、特异性和 AUC 分别为 91.30%、97.46%和 0.944。当结合眼底照片和 OCT 图像时,眼科医生确定的转诊人数从 45 人增加到 75 人,AI 从 53 人增加到 85 人。

结论:基于 AI 的 DR 筛查具有较高的敏感性和特异性,可能可行地提高社区 DR 的转诊率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/cb7edbf59bf8/12938_2022_1018_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/62ec0ec6f9f7/12938_2022_1018_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/701f30429ad5/12938_2022_1018_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/1db4b2c34b09/12938_2022_1018_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/b475aacb9bb0/12938_2022_1018_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/f7509d7c399a/12938_2022_1018_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/cb7edbf59bf8/12938_2022_1018_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/62ec0ec6f9f7/12938_2022_1018_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/701f30429ad5/12938_2022_1018_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/1db4b2c34b09/12938_2022_1018_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/b475aacb9bb0/12938_2022_1018_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/f7509d7c399a/12938_2022_1018_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3281/9301845/cb7edbf59bf8/12938_2022_1018_Fig6_HTML.jpg

相似文献

[1]
Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital.

Biomed Eng Online. 2022-7-20

[2]
Artificial intelligence-based screening for diabetic retinopathy at community hospital.

Eye (Lond). 2020-3

[3]
Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera.

Ann Med. 2024-12

[4]
Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy.

Middle East Afr J Ophthalmol. 2021

[5]
Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.

Eye (Lond). 2018-3-9

[6]
Performance of Artificial Intelligence in Detecting Diabetic Macular Edema From Fundus Photography and Optical Coherence Tomography Images: A Systematic Review and Meta-analysis.

Diabetes Care. 2024-2-1

[7]
Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.

Indian J Ophthalmol. 2020-2

[8]
Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.

Lancet Digit Health. 2019-5

[9]
Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images.

Eye (Lond). 2022-3

[10]
Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening.

J Formos Med Assoc. 2021-1

引用本文的文献

[1]
The role of artificial intelligence in the diagnosis of diabetic retinopathy through retinal lesion features: a narrative review.

Quant Imaging Med Surg. 2025-5-1

[2]
The efficacy of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis.

Int J Retina Vitreous. 2025-4-22

[3]
Artificial intelligence for early detection of diabetes mellitus complications via retinal imaging.

J Diabetes Metab Disord. 2025-4-12

[4]
Fundus Image Deep Learning Study to Explore the Association of Retinal Morphology with Age-Related Macular Degeneration Polygenic Risk Score.

Biomedicines. 2024-9-13

[5]
Hybrid deep learning models for the screening of Diabetic Macular Edema in optical coherence tomography volumes.

Sci Rep. 2024-7-31

[6]
Recognition of eye diseases based on deep neural networks for transfer learning and improved D-S evidence theory.

BMC Med Imaging. 2024-1-18

[7]
Retinal vascular arcade angle as a biomarker for visual improvement after epiretinal membrane surgery.

Eye (Lond). 2024-3

[8]
The Present and Future of Artificial Intelligence-Based Medical Image in Diabetes Mellitus: Focus on Analytical Methods and Limitations of Clinical Use.

J Korean Med Sci. 2023-8-7

[9]
Application effect of an artificial intelligence-based fundus screening system: evaluation in a clinical setting and population screening.

Biomed Eng Online. 2023-4-24

[10]
Application of artificial intelligence system for screening multiple fundus diseases in Chinese primary healthcare settings: a real-world, multicentre and cross-sectional study of 4795 cases.

Br J Ophthalmol. 2024-2-21

本文引用的文献

[1]
DETECTION OF MORPHOLOGIC PATTERNS OF DIABETIC MACULAR EDEMA USING A DEEP LEARNING APPROACH BASED ON OPTICAL COHERENCE TOMOGRAPHY IMAGES.

Retina. 2021-5-1

[2]
An Intelligent Optical Coherence Tomography-based System for Pathological Retinal Cases Identification and Urgent Referrals.

Transl Vis Sci Technol. 2020-8

[3]
Simple, Mobile-based Artificial Intelligence Algoithm in the detection of Diabetic Retinopathy (SMART) study.

BMJ Open Diabetes Res Care. 2020-1

[4]
Do we have enough ophthalmologists to manage vision-threatening diabetic retinopathy? A global perspective.

Eye (Lond). 2020-7

[5]
Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy.

Indian J Ophthalmol. 2020-2

[6]
Artificial intelligence-based screening for diabetic retinopathy at community hospital.

Eye (Lond). 2020-3

[7]
Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading.

Sci Rep. 2019-7-24

[8]
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices.

NPJ Digit Med. 2018-8-28

[9]
Artificial intelligence in diabetic retinopathy: A natural step to the future.

Indian J Ophthalmol. 2019-7

[10]
Artificial Intelligence and Optical Coherence Tomography Imaging.

Asia Pac J Ophthalmol (Phila). 2019-4-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索