Rajendiran Vignesh, Devaraju Nivedhitha, Haddad Mahdi, Ravi Nithin Sam, Panigrahi Lokesh, Paul Joshua, Gopalakrishnan Chandrasekar, Wyman Stacia, Ariudainambi Keerthiga, Mahalingam Gokulnath, Periyasami Yogapriya, Prasad Kirti, George Anila, Sukumaran Dhiyaneshwaran, Gopinathan Sandhiya, Pai Aswin Anand, Nakamura Yukio, Balasubramanian Poonkuzhali, Ramalingam Rajasekaran, Thangavel Saravanabhavan, Velayudhan Shaji R, Corn Jacon E, Mackay Joel P, Marepally Srujan, Srivastava Alok, Crossley Merlin, Mohankumar Kumarasamypet M
Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India.
Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Mol Ther. 2024 Mar 6;32(3):663-677. doi: 10.1016/j.ymthe.2024.01.023. Epub 2024 Jan 24.
BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for β-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.
BCL11A-XL利用3个锌指结构域(ZnF4、ZnF5和ZnF6)直接结合并抑制胎儿血红蛋白(HBG1/2)基因启动子,是β-血红蛋白病治疗的一个潜在靶点。破坏BCL11A-XL会导致胎儿血红蛋白去抑制和高HbF,但也会影响造血干细胞和祖细胞(HSPC)的植入以及红系成熟。有趣的是,具有锌指结构域突变的神经发育患者的HbF升高,血液学参数正常。受这一自然现象的启发,我们在特定锌指结构域使用了CRISPR-Cas9和碱基编辑,并评估了其对HbF产生和造血分化的影响。通过CRISPR-Cas9在各个锌指结构域中产生插入缺失可阻止BCL11A-XL与其在HBG1/2启动子中的位点结合,并提高HbF水平,但会影响正常造血。碱基编辑观察到的副作用要少得多——例如,体外红系成熟接近正常。然而,我们在体内观察到HSPC植入略有减少以及B细胞发育完全丧失,推测是因为目前的碱基编辑无法精确重现BCL11A-XL相关神经发育障碍患者中发现的突变。总体而言,我们的结果表明,破坏不同的锌指结构域具有不同的影响。破坏ZnF4可显著提高HbF水平,而许多其他红系靶基因不受影响,有趣的是,破坏ZnF6也可提高HbF水平,这是出乎意料的,因为该区域不直接与HBG1/2启动子相互作用。对ZnF4-6的首次结构/功能分析为抑制胎儿血红蛋白表达所需的BCL11A-XL结构域提供了重要见解,并为探索引入可能使单个基因去抑制而不影响其他功能的自然突变提供了框架。