Suppr超能文献

社交媒体上的抑郁症检测:一个分类框架以及研究挑战与机遇

Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities.

作者信息

Aldkheel Abdulrahman, Zhou Lina

机构信息

Department of Software and Information Systems, The University of North Carolina at Charlotte, Charlotte, NC USA.

Department of Business Information Systems and Operations Management, The University of North Carolina at Charlotte, Charlotte, NC USA.

出版信息

J Healthc Inform Res. 2023 Nov 20;8(1):88-120. doi: 10.1007/s41666-023-00152-3. eCollection 2024 Mar.

Abstract

Social media has become a safe space for discussing sensitive topics such as mental disorders. Depression dominates mental disorders globally, and accordingly, depression detection on social media has witnessed significant research advances. This study aims to review the current state-of-the-art research methods and propose a multidimensional framework to describe the current body of literature relating to detecting depression on social media. A study methodology involved selecting papers published between 2011 and 2023 that focused on detecting depression on social media. Five digital libraries were used to find relevant papers: Google Scholar, ACM digital library, PubMed, IEEE Xplore and ResearchGate. In selecting literature, two fundamental elements were considered: identifying papers focusing on depression detection and including papers involving social media use. In total, 50 papers were reviewed. Multiple dimensions were analyzed, including input features, social media platforms, disorder and symptomatology, ground truth, and techniques. Various types of input features were employed for depression detection, including textual, visual, behavioral, temporal, demographic, and spatial features. Among them, visual and spatial features have not been systematically reviewed to support mental health researchers in depression detection. Despite depression's fine-grained disorders, most studies focus on general depression. Recent studies have shown that social media data can be leveraged to identify depressive symptoms. Nevertheless, further research is needed to address issues like depression validation, generalizability, causes identification, and privacy and ethical considerations. An interdisciplinary collaboration between mental health professionals and computer scientists may help detect depression on social media more effectively.

摘要

社交媒体已成为讨论诸如精神障碍等敏感话题的安全空间。抑郁症在全球精神障碍中占主导地位,因此,社交媒体上的抑郁症检测取得了显著的研究进展。本研究旨在回顾当前最先进的研究方法,并提出一个多维框架来描述当前与社交媒体上抑郁症检测相关的文献。研究方法包括选择2011年至2023年间发表的专注于社交媒体上抑郁症检测的论文。使用了五个数字图书馆来查找相关论文:谷歌学术、美国计算机协会数字图书馆、PubMed、电气和电子工程师协会(IEEE)Xplore以及ResearchGate。在选择文献时,考虑了两个基本要素:识别专注于抑郁症检测的论文,并纳入涉及社交媒体使用的论文。总共审查了50篇论文。分析了多个维度,包括输入特征、社交媒体平台、疾病和症状学、基本事实以及技术。用于抑郁症检测的输入特征类型多样,包括文本、视觉、行为、时间、人口统计学和空间特征。其中,视觉和空间特征尚未得到系统审查,以支持心理健康研究人员进行抑郁症检测。尽管抑郁症存在细粒度的病症,但大多数研究都集中在一般性抑郁症上。最近的研究表明,可以利用社交媒体数据来识别抑郁症状。然而,仍需要进一步研究来解决抑郁症验证、普遍性、病因识别以及隐私和伦理考量等问题。心理健康专业人员和计算机科学家之间的跨学科合作可能有助于更有效地在社交媒体上检测抑郁症。

相似文献

1
Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities.
J Healthc Inform Res. 2023 Nov 20;8(1):88-120. doi: 10.1007/s41666-023-00152-3. eCollection 2024 Mar.
2
Detecting Depression Signs on Social Media: A Systematic Literature Review.
Healthcare (Basel). 2022 Feb 1;10(2):291. doi: 10.3390/healthcare10020291.
4
Social media based surveillance systems for healthcare using machine learning: A systematic review.
J Biomed Inform. 2020 Aug;108:103500. doi: 10.1016/j.jbi.2020.103500. Epub 2020 Jul 2.
6
Methodologies for Monitoring Mental Health on Twitter: Systematic Review.
J Med Internet Res. 2023 May 8;25:e42734. doi: 10.2196/42734.
8
Mental illness detection through harvesting social media: a comprehensive literature review.
PeerJ Comput Sci. 2024 Oct 7;10:e2296. doi: 10.7717/peerj-cs.2296. eCollection 2024.

本文引用的文献

1
Detecting Community Depression Dynamics Due to COVID-19 Pandemic in Australia.
IEEE Trans Comput Soc Syst. 2021 Jan 15;8(4):982-991. doi: 10.1109/TCSS.2020.3047604. eCollection 2021 Aug.
2
Hierarchical Convolutional Attention Network for Depression Detection on Social Media and Its Impact During Pandemic.
IEEE J Biomed Health Inform. 2024 Apr;28(4):1815-1823. doi: 10.1109/JBHI.2023.3243249. Epub 2024 Apr 4.
4
Detecting Depression Signs on Social Media: A Systematic Literature Review.
Healthcare (Basel). 2022 Feb 1;10(2):291. doi: 10.3390/healthcare10020291.
5
Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media.
World Wide Web. 2022;25(1):281-304. doi: 10.1007/s11280-021-00992-2. Epub 2022 Jan 28.
6
A textual-based featuring approach for depression detection using machine learning classifiers and social media texts.
Comput Biol Med. 2021 Aug;135:104499. doi: 10.1016/j.compbiomed.2021.104499. Epub 2021 May 17.
9
Social Media Mining for Postpartum Depression Prediction.
Stud Health Technol Inform. 2020 Jun 16;270:1391-1392. doi: 10.3233/SHTI200457.
10
Multimodal mental health analysis in social media.
PLoS One. 2020 Apr 10;15(4):e0226248. doi: 10.1371/journal.pone.0226248. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验