Suppr超能文献

基于社交媒体的机器学习医疗保健监测系统:一项系统综述。

Social media based surveillance systems for healthcare using machine learning: A systematic review.

作者信息

Gupta Aakansha, Katarya Rahul

机构信息

Department of Computer Science & Engineering, Delhi Technological University, Delhi 110042, India.

出版信息

J Biomed Inform. 2020 Aug;108:103500. doi: 10.1016/j.jbi.2020.103500. Epub 2020 Jul 2.

Abstract

BACKGROUND

Real-time surveillance in the field of health informatics has emerged as a growing domain of interest among worldwide researchers. Evolution in this field has helped in the introduction of various initiatives related to public health informatics. Surveillance systems in the area of health informatics utilizing social media information have been developed for early prediction of disease outbreaks and to monitor diseases. In the past few years, the availability of social media data, particularly Twitter data, enabled real-time syndromic surveillance that provides immediate analysis and instant feedback to those who are charged with follow-ups and investigation of potential outbreaks. In this paper, we review the recent work, trends, and machine learning(ML) text classification approaches used by surveillance systems seeking social media data in the healthcare domain. We also highlight the limitations and challenges followed by possible future directions that can be taken further in this domain.

METHODS

To study the landscape of research in health informatics performing surveillance of the various health-related data posted on social media or web-based platforms, we present a bibliometric analysis of the 1240 publications indexed in multiple scientific databases (IEEE, ACM Digital Library, ScienceDirect, PubMed) from the year 2010-2018. The papers were further reviewed based on the various machine learning algorithms used for analyzing health-related text posted on social media platforms.

FINDINGS

Based on the corpus of 148 selected articles, the study finds the types of social media or web-based platforms used for surveillance in the healthcare domain, along with the health topic(s) studied by them. In the corpus of selected articles, we found 26 articles were using machine learning technique. These articles were studied to find commonly used ML techniques. The majority of studies (24%) focused on the surveillance of flu or influenza-like illness (ILI). Twitter (64%) is the most popular data source to perform surveillance research using social media text data, and Support Vector Machine (SVM) (33%) being the most used ML algorithm for text classification.

CONCLUSIONS

The inclusion of online data in surveillance systems has improved the disease prediction ability over traditional syndromic surveillance systems. However, social media based surveillance systems have many limitations and challenges, including noise, demographic bias, privacy issues, etc. Our paper mentions future directions, which can be useful for researchers working in the area. Researchers can use this paper as a library for social media based surveillance systems in the healthcare domain and can expand such systems by incorporating the future works discussed in our paper.

摘要

背景

健康信息学领域的实时监测已成为全球研究人员日益关注的领域。该领域的发展推动了各种与公共卫生信息学相关举措的出台。利用社交媒体信息的健康信息学领域监测系统已被开发出来,用于疾病爆发的早期预测和疾病监测。在过去几年中,社交媒体数据,特别是推特数据的可得性,使得实时症状监测成为可能,它能为负责跟进和调查潜在疫情的人员提供即时分析和即时反馈。在本文中,我们回顾了医疗领域中寻求社交媒体数据的监测系统所采用的最新研究成果、趋势以及机器学习(ML)文本分类方法。我们还强调了局限性和挑战,以及该领域未来可能进一步发展的方向。

方法

为了研究健康信息学领域中对社交媒体或基于网络平台上发布的各种健康相关数据进行监测的研究概况,我们对2010年至2018年在多个科学数据库(IEEE、ACM数字图书馆、ScienceDirect、PubMed)中索引的1240篇出版物进行了文献计量分析。这些论文还根据用于分析社交媒体平台上发布的健康相关文本的各种机器学习算法进行了进一步审查。

研究结果

基于148篇选定文章的语料库,该研究发现了医疗领域中用于监测的社交媒体或基于网络的平台类型,以及它们所研究的健康主题。在选定文章的语料库中,我们发现有26篇文章使用了机器学习技术。对这些文章进行研究以找出常用的ML技术。大多数研究(24%)集中在流感或流感样疾病(ILI)的监测上。推特(64%)是使用社交媒体文本数据进行监测研究最受欢迎的数据源,支持向量机(SVM)(33%)是文本分类中使用最多的ML算法。

结论

在监测系统中纳入在线数据提高了疾病预测能力,超过了传统的症状监测系统。然而,基于社交媒体的监测系统存在许多局限性和挑战,包括噪音、人口统计学偏差、隐私问题等。我们的论文提到了未来的方向,这对该领域的研究人员可能有用。研究人员可以将本文用作医疗领域基于社交媒体的监测系统的资料库,并可以通过纳入我们论文中讨论的未来工作来扩展此类系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec5b/7331523/e72509f49ada/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验