Suppr超能文献

评估中国女性产前抑郁症状的风险:血清代谢组、多种维生素补充剂摄入量和临床血液指标的综合评估

Assessing the risk of prenatal depressive symptoms in Chinese women: an integrated evaluation of serum metabolome, multivitamin supplement intake, and clinical blood indicators.

作者信息

Yang Rongrong, Lin Zhenguo, Cai Yanhua, Chen Nan, Zhou Ying, Zhang Jie, Hong Guolin

机构信息

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.

Department of Clinical Medicine, Xiamen Medical College, Xiamen, China.

出版信息

Front Psychiatry. 2024 Jan 11;14:1234461. doi: 10.3389/fpsyt.2023.1234461. eCollection 2023.

Abstract

BACKGROUND

Prenatal depressive symptoms (PDS) is a serious public health problem. This study aimed to develop an integrated panel and nomogram to assess at-risk populations by examining the association of PDS with the serum metabolome, multivitamin supplement intake, and clinical blood indicators.

METHODS

This study comprised 221 pregnant women, categorized into PDS and non-PDS groups based on the Edinburgh postnatal depression scale. The participants were divided into training and test sets according to their enrollment time. We conducted logistic regression analysis to identify risk factors, and employed liquid chromatography/high resolution mass spectrometry-based serum metabolome analysis to identify metabolic biomarkers. Multiple factor analysis was used to combine risk factors, clinical blood indicators and key metabolites, and then a nomogram was developed to estimate the probability of PDS.

RESULTS

We identified 36 important differential serum metabolites as PDS biomarkers, mainly involved in amino acid metabolism and lipid metabolism. Multivitamin intake works as a protective factor for PDS. The nomogram model, including multivitamin intake, HDL-C and three key metabolites (histidine, estrone and valylasparagine), exhibited an AUC of 0.855 in the training set and 0.774 in the test set, and the calibration curves showed good agreement, indicating that the model had good stability.

CONCLUSION

Our approach integrates multiple models to identify metabolic biomarkers for PDS, ensuring their robustness. Furthermore, the inclusion of dietary factors and clinical blood indicators allows for a comprehensive characterization of each participant. The analysis culminated in an intuitive nomogram based on multimodal data, displaying potential performance in initial PDS risk assessment.

摘要

背景

产前抑郁症状(PDS)是一个严重的公共卫生问题。本研究旨在通过检测PDS与血清代谢组、多种维生素补充剂摄入量及临床血液指标之间的关联,开发一个综合指标面板和列线图,以评估高危人群。

方法

本研究纳入221名孕妇,根据爱丁堡产后抑郁量表将其分为PDS组和非PDS组。参与者根据入组时间分为训练集和测试集。我们进行逻辑回归分析以识别风险因素,并采用基于液相色谱/高分辨率质谱的血清代谢组分析来识别代谢生物标志物。使用多因素分析将风险因素、临床血液指标和关键代谢物相结合,然后开发列线图来估计PDS的概率。

结果

我们确定了36种重要的差异血清代谢物作为PDS生物标志物,主要涉及氨基酸代谢和脂质代谢。多种维生素摄入是PDS的保护因素。列线图模型包括多种维生素摄入、高密度脂蛋白胆固醇(HDL-C)和三种关键代谢物(组氨酸、雌酮和缬氨酰天冬酰胺),在训练集中的曲线下面积(AUC)为0.855,在测试集中为0.774,校准曲线显示出良好的一致性,表明该模型具有良好的稳定性。

结论

我们的方法整合了多个模型来识别PDS的代谢生物标志物,确保了它们的稳健性。此外,纳入饮食因素和临床血液指标能够全面描述每个参与者。分析最终得出基于多模态数据的直观列线图,在初始PDS风险评估中显示出潜在性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1088/10808622/5de545fefba6/fpsyt-14-1234461-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验