Nasution Muhammad Rangga Aziz, Herfandi Herfandi, Sitanggang Ones Sanjerico, Nguyen Huy, Jang Yeong Min
Department of Electronics Engineering, Kookmin University, Seoul 02707, Republic of Korea.
Sensors (Basel). 2024 Jan 22;24(2):702. doi: 10.3390/s24020702.
In recent years, optical camera communication (OCC) has garnered attention as a research focus. OCC uses optical light to transmit data by scattering the light in various directions. Although this can be advantageous with multiple transmitter scenarios, there are situations in which only a single transmitter is permitted to communicate. Therefore, this method is proposed to fulfill the latter requirement using 2D object size to calculate the proximity of the objects through an AI object detection model. This approach enables prioritization among transmitters based on the transmitter proximity to the receiver for communication, facilitating alternating communication with multiple transmitters. The image processing employed when receiving the signals from transmitters enables communication to be performed without the need to modify the camera parameters. During the implementation, the distance between the transmitter and receiver varied between 1.0 and 5.0 m, and the system demonstrated a maximum data rate of 3.945 kbps with a minimum BER of 4.2×10-3. Additionally, the system achieved high accuracy from the refined YOLOv8 detection algorithm, reaching 0.98 mAP at a 0.50 IoU.
近年来,光学相机通信(OCC)作为一个研究重点受到了关注。OCC利用光通过向各个方向散射光来传输数据。虽然这在多个发射器场景中可能具有优势,但也存在只允许单个发射器进行通信的情况。因此,提出了这种方法,通过人工智能目标检测模型利用二维物体大小来计算物体的接近程度,以满足后一种需求。这种方法能够根据发射器与接收器的接近程度对发射器进行优先级排序,以便进行通信,从而促进与多个发射器的交替通信。在从发射器接收信号时采用的图像处理技术使得无需修改相机参数即可进行通信。在实施过程中,发射器与接收器之间的距离在1.0米至5.0米之间变化,该系统展示了3.945 kbps的最大数据速率和4.2×10-3的最小误码率。此外,该系统通过改进的YOLOv8检测算法实现了高精度,在0.50的交并比(IoU)下达到了0.98的平均精度均值(mAP)。