Suppr超能文献

单核吞噬细胞系统相关的多组学特征产生具有不同总生存期、药物和免疫治疗反应的头颈部鳞状细胞癌亚型。

Mononuclear phagocyte system-related multi-omics features yield head and neck squamous cell carcinoma subtypes with distinct overall survival, drug, and immunotherapy responses.

作者信息

Zhang Cong, Deng Jielian, Li Kangjie, Lai Guichuan, Liu Hui, Zhang Yuan, Xie Biao, Zhong Xiaoni

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.

出版信息

J Cancer Res Clin Oncol. 2024 Jan 27;150(2):37. doi: 10.1007/s00432-023-05512-5.

Abstract

BACKGROUND

Recent research reported that mononuclear phagocyte system (MPS) can contribute to immune defense but the classification of head and neck squamous cell carcinoma (HNSCC) patients based on MPS-related multi-omics features using machine learning lacked.

METHODS

In this study, we obtain marker genes for MPS through differential analysis at the single-cell level and utilize "similarity network fusion" and "MoCluster" algorithms to cluster patients' multi-omics features. Subsequently, based on the corresponding clinical information, we investigate the prognosis, drugs, immunotherapy, and biological differences between the subtypes. A total of 848 patients have been included in this study, and the results obtained from the training set can be verified by two independent validation sets using "the nearest template prediction".

RESULTS

We identified two subtypes of HNSCC based on MPS-related multi-omics features, with CS2 exhibiting better predictive prognosis and drug response. CS2 represented better xenobiotic metabolism and higher levels of T and B cell infiltration, while the biological functions of CS1 were mainly enriched in coagulation function, extracellular matrix, and the JAK-STAT signaling pathway. Furthermore, we established a novel and stable classifier called "getMPsub" to classify HNSCC patients, demonstrating good consistency in the same training set. External validation sets classified by "getMPsub" also illustrated similar differences between the two subtypes.

CONCLUSIONS

Our study identified two HNSCC subtypes by machine learning and explored their biological difference. Notably, we constructed a robust classifier that presented an excellent classifying prediction, providing new insight into the precision medicine of HNSCC.

摘要

背景

近期研究报道单核吞噬细胞系统(MPS)有助于免疫防御,但缺乏基于机器学习利用MPS相关多组学特征对头颈部鳞状细胞癌(HNSCC)患者进行分类的研究。

方法

在本研究中,我们通过单细胞水平的差异分析获得MPS的标记基因,并利用“相似性网络融合”和“MoCluster”算法对患者的多组学特征进行聚类。随后,基于相应的临床信息,我们研究各亚型之间的预后、药物、免疫治疗及生物学差异。本研究共纳入848例患者,训练集所得结果可通过两个独立验证集使用“最近模板预测”进行验证。

结果

我们基于MPS相关多组学特征鉴定出HNSCC的两个亚型,其中CS2表现出更好的预后预测和药物反应。CS2表现出更好的外源性物质代谢以及更高水平的T和B细胞浸润,而CS1的生物学功能主要富集于凝血功能、细胞外基质和JAK-STAT信号通路。此外,我们建立了一种名为“getMPsub”的新型稳定分类器来对HNSCC患者进行分类,在同一训练集中显示出良好的一致性。由“getMPsub”分类的外部验证集也说明了两个亚型之间存在类似差异。

结论

我们的研究通过机器学习鉴定出两种HNSCC亚型并探索了它们的生物学差异。值得注意的是,我们构建了一个强大的分类器,具有出色的分类预测能力,为HNSCC的精准医学提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b2c/10817853/ac2f407e2ad3/432_2023_5512_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验