Suppr超能文献

整合多组学分析鉴定具有不同治疗弱点的头颈部鳞状细胞癌的分子亚型。

Integrative Multiomics Analyses Identify Molecular Subtypes of Head and Neck Squamous Cell Carcinoma with Distinct Therapeutic Vulnerabilities.

机构信息

Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.

Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China.

出版信息

Cancer Res. 2024 Sep 16;84(18):3101-3117. doi: 10.1158/0008-5472.CAN-23-3594.

Abstract

Substantial heterogeneity in molecular features, patient prognoses, and therapeutic responses in head and neck squamous cell carcinomas (HNSCC) highlights the urgent need to develop molecular classifications that reliably and accurately reflect tumor behavior and inform personalized therapy. Here, we leveraged the similarity network fusion bioinformatics approach to jointly analyze multiomics datasets spanning copy number variations, somatic mutations, DNA methylation, and transcriptomic profiling and derived a prognostic classification system for HNSCC. The integrative model consistently identified three subgroups (IMC1-3) with specific genomic features, biological characteristics, and clinical outcomes across multiple independent cohorts. The IMC1 subgroup included proliferative, immune-activated tumors and exhibited a more favorable prognosis. The IMC2 subtype harbored activated EGFR signaling and an inflamed tumor microenvironment with cancer-associated fibroblast/vascular infiltrations. Alternatively, the IMC3 group featured highly aberrant metabolic activities and impaired immune infiltration and recruiting. Pharmacogenomics analyses from in silico predictions and from patient-derived xenograft model data unveiled subtype-specific therapeutic vulnerabilities including sensitivity to cisplatin and immunotherapy in IMC1 and EGFR inhibitors (EGFRi) in IMC2, which was experimentally validated in patient-derived organoid models. Two signatures for prognosis and EGFRi sensitivity were developed via machine learning. Together, this integrative multiomics clustering for HNSCC improves current understanding of tumor heterogeneity and facilitates patient stratification and therapeutic development tailored to molecular vulnerabilities. Significance: Head and neck squamous cell carcinoma classification using integrative multiomics analyses reveals subtypes with distinct genetics, biological features, clinicopathological traits, and therapeutic vulnerabilities, providing insights into tumor heterogeneity and personalized treatment strategies.

摘要

头颈部鳞状细胞癌(HNSCC)在分子特征、患者预后和治疗反应方面存在显著异质性,这凸显了迫切需要开发能够可靠且准确反映肿瘤行为并为个性化治疗提供信息的分子分类方法。在这里,我们利用相似网络融合生物信息学方法,联合分析了涵盖拷贝数变异、体细胞突变、DNA 甲基化和转录组谱的多组学数据集,并为 HNSCC 衍生出了一种预后分类系统。该综合模型在多个独立队列中一致地识别了具有特定基因组特征、生物学特征和临床结果的三个亚组(IMC1-3)。IMC1 亚组包括增殖、免疫激活的肿瘤,表现出更有利的预后。IMC2 亚型具有激活的 EGFR 信号和炎症肿瘤微环境,伴有癌症相关成纤维细胞/血管浸润。相反,IMC3 组表现出高度异常的代谢活性,并且免疫浸润和募集受损。来自计算机预测和患者来源的异种移植模型数据的药物基因组学分析揭示了亚组特异性的治疗弱点,包括 IMC1 对顺铂和免疫治疗的敏感性以及 IMC2 对 EGFR 抑制剂(EGFRi)的敏感性,这些在患者来源的类器官模型中得到了实验验证。通过机器学习开发了用于预后和 EGFRi 敏感性的两个签名。总之,这项针对 HNSCC 的综合多组学聚类提高了对肿瘤异质性的现有认识,并促进了基于分子脆弱性的患者分层和治疗开发。意义:使用综合多组学分析对头颈部鳞状细胞癌进行分类,揭示了具有不同遗传学、生物学特征、临床病理特征和治疗弱点的亚型,为肿瘤异质性和个性化治疗策略提供了深入了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验