Suppr超能文献

多元曲线分辨-类类比软独立建模(MCR-SIMCA)

Multivariate curve resolution-soft independent modelling of class analogy (MCR-SIMCA).

作者信息

Karimvand Somaiyeh Khodadadi, Pahlevan Ali, Zade Somaye Vali, Jafari Jamile Mohammad, Abdollahi Hamid

机构信息

Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran.

Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.

出版信息

Anal Chim Acta. 2024 Feb 22;1291:342205. doi: 10.1016/j.aca.2024.342205. Epub 2024 Jan 3.

Abstract

BACKGROUND

Various classification, class modeling, and clustering techniques operate within abstract spaces, utilizing Principal Components (e.g., Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA)) or latent variable spaces (e.g., Partial Least Squares Discriminant Analysis (PLS-DA)). It's important to note that PCA, despite being a mathematical tool, defines its Principal Components under certain mathematical constraints, it has a wide range of applications in the analysis of real-world systems. In this research, we assess the viability of employing the Multivariate Curve Resolution (MCR) subspace within class modeling techniques, as an alternative to the PC subspace. (92).

RESULTS

This study evaluates the use of the MCR subspace in class modeling methods, specifically in tandem with soft independent modeling of class analogy (SIMCA), to investigate the advantages of employing the meaningful physico-chemical subspace of MCR over the mathematical subspace of PCA. In the MCR-SIMCA strategy, the model is constructed by applying MCR to training samples from a target class. The MCR model effectively partitions the data into two smaller sub-matrices: the contribution matrix and the corresponding response matrix. In the next step, the contribution matrix resulting from the decomposition of the training set develops a distance plot (DP). First, the theory of the MCR-SIMCA model is discussed in detail. Next, two real experimental datasets were analyzed, and their performance was compared with the DD-SIMCA model. In most cases, the results were as good as or even more satisfactory than those obtained with the DD-SIMCA model. (146).

SIGNIFICANCE

The suggested class modeling method presents a promising avenue for the analysis of real-world natural systems. The study's results emphasize the practical utility of the MCR approach, underscoring the significance of the MCR subspace advantages over the PCA subspace. (39).

摘要

背景

各种分类、类建模和聚类技术在抽象空间中运行,利用主成分(例如线性判别分析(LDA)、主成分分析(PCA))或潜在变量空间(例如偏最小二乘判别分析(PLS-DA))。需要注意的是,PCA尽管是一种数学工具,但在某些数学约束下定义其主成分,它在现实世界系统分析中具有广泛的应用。在本研究中,我们评估了在类建模技术中使用多元曲线分辨(MCR)子空间作为PC子空间替代方案的可行性。(92)

结果

本研究评估了MCR子空间在类建模方法中的应用,特别是与类类比软独立建模(SIMCA)相结合,以研究使用MCR有意义的物理化学子空间相对于PCA数学子空间的优势。在MCR-SIMCA策略中,通过将MCR应用于目标类的训练样本构建模型。MCR模型有效地将数据划分为两个较小的子矩阵:贡献矩阵和相应的响应矩阵。在下一步中,由训练集分解得到的贡献矩阵生成距离图(DP)。首先,详细讨论了MCR-SIMCA模型的理论。接下来,分析了两个实际实验数据集,并将其性能与DD-SIMCA模型进行了比较。在大多数情况下,结果与DD-SIMCA模型获得的结果一样好甚至更令人满意。(146)

意义

所建议的类建模方法为现实世界自然系统的分析提供了一条有前途的途径。该研究结果强调了MCR方法的实际效用,突出了MCR子空间相对于PCA子空间优势的重要性。(39)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验