Lee Yonghoon, Han Song-Hee, Nam Sang-Ho
1 Department of Chemistry, Mokpo National University, Jeonnam, Republic of Korea.
2 Division of Navigation Science, Mokpo National Maritime University, Jeonnam, Republic of Korea.
Appl Spectrosc. 2017 Sep;71(9):2199-2210. doi: 10.1177/0003702817697337. Epub 2017 Apr 4.
We report soft independent modeling of class analogy (SIMCA) analysis of laser-induced plasma emission spectra of edible salts from 12 different geographical origins for their classification model. The spectra were recorded by using a simple laser-induced breakdown spectroscopy (LIBS) device. Each class was modeled by principal component analysis (PCA) of the LIBS spectra. For the classification of a separate test data set, the SIMCA model showed 97% accuracy in classification. An additional insight could be obtained by comparing the SIMCA classification result with that of partial least squares discriminant analysis (PLS-DA). Different from SIMCA, the PLS-DA classification accuracy seems to be sensitive to addition of new sample classes to the whole data set. This indicates that the individual modeling approach (SIMCA) can be an alternative to global modeling (PLS-DA), particularly for the classification problems with a relatively large number of sample classes.
我们报告了对来自12个不同地理来源的食用盐激光诱导等离子体发射光谱进行类类比软独立建模(SIMCA)分析以建立其分类模型的情况。光谱是使用简单的激光诱导击穿光谱(LIBS)设备记录的。每个类别通过LIBS光谱的主成分分析(PCA)进行建模。对于单独测试数据集的分类,SIMCA模型的分类准确率为97%。通过将SIMCA分类结果与偏最小二乘判别分析(PLS-DA)的结果进行比较,可以获得更多见解。与SIMCA不同,PLS-DA分类准确率似乎对向整个数据集中添加新样本类别很敏感。这表明个体建模方法(SIMCA)可以作为全局建模(PLS-DA)的替代方法,特别是对于具有相对大量样本类别的分类问题。