Schoepe Thorben, Janotte Ella, Milde Moritz B, Bertrand Olivier J N, Egelhaaf Martin, Chicca Elisabetta
Peter Grünberg Institut 15, Forschungszentrum Jülich, Aachen, Germany.
Faculty of Technology and Cognitive Interaction Technology Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany.
Nat Commun. 2024 Jan 27;15(1):817. doi: 10.1038/s41467-024-45063-y.
Animals have evolved mechanisms to travel safely and efficiently within different habitats. On a journey in dense terrains animals avoid collisions and cross narrow passages while controlling an overall course. Multiple hypotheses target how animals solve challenges faced during such travel. Here we show that a single mechanism enables safe and efficient travel. We developed a robot inspired by insects. It has remarkable capabilities to travel in dense terrain, avoiding collisions, crossing gaps and selecting safe passages. These capabilities are accomplished by a neuromorphic network steering the robot toward regions of low apparent motion. Our system leverages knowledge about vision processing and obstacle avoidance in insects. Our results demonstrate how insects might safely travel through diverse habitats. We anticipate our system to be a working hypothesis to study insects' travels in dense terrains. Furthermore, it illustrates that we can design novel hardware systems by understanding the underlying mechanisms driving behaviour.
动物已经进化出在不同栖息地安全、高效移动的机制。在茂密地形中行进时,动物在控制总体路线的同时避免碰撞并穿过狭窄通道。多种假说针对动物如何解决此类移动过程中面临的挑战。在此我们表明,单一机制就能实现安全、高效的移动。我们研发了一款受昆虫启发的机器人。它在茂密地形中具有非凡的移动能力,能避免碰撞、跨越间隙并选择安全通道。这些能力是通过一个神经形态网络实现的,该网络引导机器人朝着表观运动较低的区域移动。我们的系统利用了有关昆虫视觉处理和避障的知识。我们的结果展示了昆虫如何在多样的栖息地中安全移动。我们预计我们的系统将成为研究昆虫在茂密地形中移动的一个可行假说。此外,它还表明我们可以通过理解驱动行为的潜在机制来设计新颖的硬件系统。