Suppr超能文献

忆阻突触连接大脑和硅神经元尖峰。

Memristive synapses connect brain and silicon spiking neurons.

机构信息

Centre for Electronics Frontiers, University of Southampton, Southampton, SO17 1BJ, UK.

Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, 35131, Italy.

出版信息

Sci Rep. 2020 Feb 25;10(1):2590. doi: 10.1038/s41598-020-58831-9.

Abstract

Brain function relies on circuits of spiking neurons with synapses playing the key role of merging transmission with memory storage and processing. Electronics has made important advances to emulate neurons and synapses and brain-computer interfacing concepts that interlink brain and brain-inspired devices are beginning to materialise. We report on memristive links between brain and silicon spiking neurons that emulate transmission and plasticity properties of real synapses. A memristor paired with a metal-thin film titanium oxide microelectrode connects a silicon neuron to a neuron of the rat hippocampus. Memristive plasticity accounts for modulation of connection strength, while transmission is mediated by weighted stimuli through the thin film oxide leading to responses that resemble excitatory postsynaptic potentials. The reverse brain-to-silicon link is established through a microelectrode-memristor pair. On these bases, we demonstrate a three-neuron brain-silicon network where memristive synapses undergo long-term potentiation or depression driven by neuronal firing rates.

摘要

大脑功能依赖于尖峰神经元的电路,突触起着融合传输与记忆存储和处理的关键作用。电子学在模拟神经元和突触方面取得了重要进展,脑机接口的概念正在将大脑和受大脑启发的设备联系起来。我们报告了大脑和硅尖峰神经元之间的忆阻器连接,这些连接模拟了真实突触的传输和可塑性特性。一个与金属钛氧化物薄膜微电极配对的忆阻器将一个硅神经元连接到大鼠海马体的一个神经元上。忆阻器的可塑性解释了连接强度的调制,而传输则是通过薄膜氧化物进行加权刺激来介导的,从而产生类似于兴奋性突触后电位的反应。反向的大脑到硅的连接是通过一个微电极-忆阻器对建立的。在此基础上,我们展示了一个由三个神经元组成的脑-硅网络,其中忆阻器突触在神经元的放电率驱动下经历长时程增强或减弱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d602/7042282/d5e0e8b8012e/41598_2020_58831_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验