Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France.
Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France.
Plant J. 2024 May;118(4):997-1015. doi: 10.1111/tpj.16646. Epub 2024 Jan 28.
Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.
内复制,即细胞通过连续的全基因组复制而不进行细胞分裂来增加其 DNA 含量,是高等植物中内多倍体的主要来源。内复制在植物的生长和发育中起着关键作用,并与特定转录程序的激活有关,这些程序是每种细胞类型所特有的,从而定义了它们的身份。在植物中,内复制存在于许多器官和细胞类型中,特别是在农业上有价值的器官中,如番茄的肉质果实(果皮)表现出较高的多倍体水平。我们使用番茄果皮组织作为模型系统,来探索与果实生长过程中内复制进展相关的转录组。我们证实,表达水平与多倍体水平全球相关,并鉴定出了一组差异表达基因,它们仅表现出发育特异性表达模式、仅多倍体特异性表达模式或多倍体和发育的累加效应导致的表达谱。当比较特定发育阶段的多倍体水平时,我们发现非内复制细胞主要由细胞分裂状态和角质层合成来定义,而内复制细胞主要由其代谢活性随时间快速变化来定义。通过将这个数据集与公开的时空果皮表达数据相结合,我们提出了一个描述果皮内多倍体水平分布的图谱。这些基于转录组的预测通过在果皮组织内定量多倍体水平得到了验证。这种原位多倍体定量揭示了内复制及其在早期果实发育过程中的细胞层特异性的动态进展。总之,该研究揭示了番茄果皮中内复制、细胞分化和基因表达模式之间复杂的关系。