Guo Jia, Liu Quan, Li Kaiyang, Chen Xinhe, Feng Yubo, Yao Xiaxi, Wei Bo, Yang Jun
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
J Colloid Interface Sci. 2024 Apr 15;660:943-952. doi: 10.1016/j.jcis.2024.01.139. Epub 2024 Jan 23.
Molybdenum selenide (MoSe) has shown potential sodium storage properties due to its large layer spacing (0.646 nm) and high theoretical capacity and narrow band gap. However, as the anode material of sodium ion batteries (SIBs), the MoSe's performance is not ideal, especially due to the layer agglomeration and stacking caused by volume expansion and low intrinsic conductivity. Hence, morphology design and electronic configuration of MoSe is proposed via building MoSe nanosheets and auxiliary sulfur doping on the surface of the TiO hollow nanosphere (S-MoSe@TiO). The hierarchical shaped S-MoSe@TiO effectively overcomes the shortcomings of high surface energy and weak interlayer van der Waals force of MoSe. As anode for SIBs, S-MoSe@TiO delivers enhanced cycling life and rate capability (308 mAh/g at 10 A/g after 1000 cycles) with the comparison of MoSe@TiO or pure MoSe and TiO. Such excellent sodium storage performance is due to the fast diffusion kinetics of Na. When it is applied in sodium ion full batteries, the S-MoSe@TiO anode based cell can reach a high energy density of 187.8 W h kg at 148.3 W kg. The design of the new MoSe-based hybrid provides a novel scheme for the preparation of advanced anode in SIBs.
硒化钼(MoSe)因其较大的层间距(0.646纳米)、较高的理论容量和较窄的带隙而展现出潜在的钠存储性能。然而,作为钠离子电池(SIBs)的负极材料,MoSe的性能并不理想,尤其是由于体积膨胀和本征电导率低导致的层团聚和堆叠。因此,通过构建MoSe纳米片并在TiO空心纳米球(S-MoSe@TiO)表面进行辅助硫掺杂,对MoSe的形貌进行设计并调整其电子构型。具有分级结构的S-MoSe@TiO有效地克服了MoSe表面能高和层间范德华力弱的缺点。作为SIBs的负极,与MoSe@TiO或纯MoSe和TiO相比,S-MoSe@TiO具有更长的循环寿命和更高的倍率性能(1000次循环后在10 A/g下为308 mAh/g)。如此优异的钠存储性能归因于Na的快速扩散动力学。当将其应用于钠离子全电池时,基于S-MoSe@TiO负极的电池在148.3 W/kg时可达到187.8 W h/kg的高能量密度。这种新型MoSe基复合材料的设计为制备SIBs中的先进负极提供了一种新方案。