Guo Jia, Dong Huilong, Liu Jing, Guan Jinpeng, Li Kaiyang, Feng Yubo, Liu Quan, Yang Jun, Geng Hongbo
School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1427-1437. doi: 10.1016/j.jcis.2023.08.179. Epub 2023 Aug 29.
The development of high-quality anode materials is critical for the advancement of sodium-ion batteries (SIBs). MoSe is a candidate anode for SIBs, while its inherent limitations, such as the agglomeration of nanosheets, poor electron conductance and mechanical strain due to volume changes during cycling, which can lead to decreased performance and durability in SIBs. To overcome the challenges, a novel aliovalent doping and structural engineering was taken to prepare reduced graphene oxide (rGO) functionalized and phosphorus-doped MoSe flake (P-MoSe@rGO) via in situ growth technique. The unique structural design of P-MoSe@rGO addresses material limitations and optimizes performance by providing a high conductive grid for ion/electron transfer, a large surface area for full electrolyte penetration, and effective suppression of MoSe nanosheet agglomeration and mechanical strain due to volume change during charge/discharge in SIBs. The P-MoSe@rGO inherits the enhanced electronic conductivity and enlarged layer spacing (from 0.652 to 0.668 nm), which boosts the reaction kinetics and facilitates the insertion/extraction of sodium ions. The P-MoSe@rGO exhibits excellent long-cycle properties with a high reversible capacity of 384 mAh/g at 2 A/g and 338 mAh/g at 10 A/g after 1450 circulations. Detailed discussion of reaction kinetics is conducted. Theoretical calculations prove that doping of P atoms in MoSe reduces the forbidden band gap from 1.443 to 1.397 eV and accelerates ion and electron migration. Furthermore, the full cell P-MoSe@rGO//NaV(PO)@C (NVP@C) demonstrates a remarkable cycling durability of 326 mAh/g after 200 cycles and a high energy density of 159.6 Wh kg. This process provides a reference for the adjustment and modification of MoSe to adapt to high performance SIBs anode.
高质量阳极材料的开发对于钠离子电池(SIBs)的发展至关重要。MoSe是SIBs的候选阳极,但其存在固有局限性,如纳米片团聚、电子传导性差以及循环过程中因体积变化产生的机械应变,这会导致SIBs的性能和耐久性下降。为了克服这些挑战,采用了一种新颖的异价掺杂和结构工程方法,通过原位生长技术制备了还原氧化石墨烯(rGO)功能化且磷掺杂的MoSe薄片(P-MoSe@rGO)。P-MoSe@rGO独特的结构设计解决了材料局限性,并通过为离子/电子转移提供高导电网格、为电解质完全渗透提供大表面积以及有效抑制MoSe纳米片团聚和SIBs充放电过程中因体积变化产生的机械应变来优化性能。P-MoSe@rGO继承了增强的电子导电性和增大的层间距(从0.652纳米增加到0.668纳米),这促进了反应动力学并有利于钠离子的嵌入/脱出。P-MoSe@rGO表现出优异的长循环性能,在1450次循环后,在2 A/g时具有384 mAh/g的高可逆容量,在10 A/g时具有338 mAh/g的可逆容量。对反应动力学进行了详细讨论。理论计算证明,MoSe中P原子的掺杂将禁带宽度从1.443 eV降低到1.397 eV,并加速了离子和电子迁移。此外,全电池P-MoSe@rGO//NaV(PO)@C(NVP@C)在200次循环后表现出326 mAh/g的显著循环耐久性和159.6 Wh kg的高能量密度。该过程为调整和改性MoSe以适应高性能SIBs阳极提供了参考。