Porto Lucas E A, Rabelo Rafael, Terra Cunha Marcelo, Cabello Adán
Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas (Unicamp), Rua Sérgio Buarque de Holanda 777, Campinas, São Paulo 13083-859, Brazil.
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas (Unicamp), Rua Sérgio Buarque de Holanda 651, Campinas, São Paulo 13083-859, Brazil.
Philos Trans A Math Phys Eng Sci. 2024 Mar 18;382(2268):20230006. doi: 10.1098/rsta.2023.0006. Epub 2024 Jan 29.
A necessary condition for the probabilities of a set of events to exhibit Bell non-locality or Kochen-Specker contextuality is that the graph of exclusivity of the events contains induced odd cycles with five or more vertices, called odd holes, or their complements, called odd antiholes. From this perspective, events whose graph of exclusivity are odd holes or antiholes are the building blocks of contextuality. For any odd hole or antihole, any assignment of probabilities allowed by quantum theory can be achieved in specific contextuality scenarios. However, here we prove that, for any odd hole, the probabilities that attain the quantum maxima cannot be achieved in Bell scenarios. We also prove it for the simplest odd antiholes. This leads us to the conjecture that the quantum maxima for any of the building blocks cannot be achieved in Bell scenarios. This result sheds light on why the problem of whether a probability assignment is quantum is decidable, while whether a probability assignment within a given Bell scenario is quantum is, in general, undecidable. This also helps to understand why identifying principles for quantum correlations is simpler when we start by identifying principles for quantum sets of probabilities defined with no reference to specific scenarios. This article is part of the theme issue 'Quantum contextuality, causality and freedom of choice'.
一组事件的概率要表现出贝尔非定域性或科亨 - 施佩克尔语境性,其必要条件是这些事件的互斥性图包含具有五个或更多顶点的诱导奇圈,称为奇洞,或者其补图,称为奇反洞。从这个角度来看,其互斥性图为奇洞或反洞的事件是语境性的构建块。对于任何奇洞或奇反洞,量子理论允许的任何概率赋值都可以在特定的语境性场景中实现。然而,在这里我们证明,对于任何奇洞,在贝尔场景中无法实现达到量子最大值的概率。我们也对最简单的奇反洞证明了这一点。这使我们推测,对于任何构建块,在贝尔场景中都无法实现量子最大值。这一结果揭示了为什么概率赋值是否为量子的问题是可判定的,而在给定贝尔场景内概率赋值是否为量子的问题通常是不可判定的。这也有助于理解为什么当我们从确定不参考特定场景定义的量子概率集的原则开始时,确定量子关联的原则会更简单。本文是主题为“量子语境性、因果性与选择自由”的一部分。