Dzhafarov Ehtibar N
Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
Philos Trans A Math Phys Eng Sci. 2024 Mar 18;382(2268):20230015. doi: 10.1098/rsta.2023.0015. Epub 2024 Jan 29.
This paper provides a systematic account of the hidden variable models (HVMs) formulated to describe systems of random variables with mutually exclusive contexts. Any such system can be described either by a model with free choice but generally context-dependent mapping of the hidden variables into observable ones, or by a model with context-independent mapping but generally compromised free choice. These two types of HVMs are equivalent, one can always be translated into another. They are also unfalsifiable, applicable to all possible systems. These facts, the equivalence and unfalsifiability, imply that freedom of choice and context-independent mapping are no assumptions at all, and they tell us nothing about freedom of choice or physical influences exerted by contexts as these notions would be understood in science and philosophy. The conjunction of these two notions, however, defines a falsifiable HVM that describes non-contextuality when applied to systems with no disturbance or to consistifications of arbitrary systems. This HVM is most adequately captured by the term 'context-irrelevance', meaning that no distribution in the model changes with context. This article is part of the theme issue 'Quantum contextuality, causality and freedom of choice'.
本文系统阐述了为描述具有互斥情境的随机变量系统而构建的隐变量模型(HVMs)。任何此类系统都可以通过以下两种模型来描述:一种是具有自由选择但隐变量到可观测量的映射通常依赖于情境的模型;另一种是映射与情境无关但通常会损害自由选择的模型。这两种类型的HVMs是等价的,总是可以相互转换。它们也是不可证伪的,适用于所有可能的系统。这些事实,即等价性和不可证伪性,意味着自由选择和与情境无关的映射根本不是假设,而且它们对于自由选择或情境所施加的物理影响没有任何说明,因为这些概念在科学和哲学中是这样理解的。然而,这两个概念的结合定义了一个可证伪的HVM,当应用于无干扰的系统或任意系统的组合时,它描述了非情境性。这个HVM最恰当地用“情境无关性”这个术语来描述,意思是模型中的任何分布都不会随情境而变化。本文是主题为“量子情境性、因果性和自由选择”的一部分。