Pouplard Alban, Tsai Peichun Amy
Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 2G8, Canada.
Sci Rep. 2024 Jan 29;14(1):2338. doi: 10.1038/s41598-024-52218-w.
Despite their aesthetic elegance, wavy or fingering patterns emerge when a fluid of low viscosity pushes another immiscible fluid of high viscosity in a porous medium, producing an incomplete sweep and hampering several crucial technologies. Some examples include chromatography, printing, coating flows, oil-well cementing, as well as large-scale technologies of groundwater and enhanced oil recovery. Controlling such fingering instabilities is notoriously challenging and unresolved for complex fluids of varying viscosity because the fluids' mobility contrast is often predetermined and yet the predominant drive in determining a stable, flat or unstable, wavy interface. Here we show, experimentally and theoretically, how to suppress or control the primary viscous fingering patterns of a common type of complex fluids (of shear-thinning with a low yield stress) using a radially tapered cell of linearly varying gap thickness, h(r). Experimentally, we displace a complex viscous (PAA) solution with gas under a constant flow rate (Q), varied between 0.02 and 2 slpm (standard liter per minute), in a radially converging cell with a constant gap-thickness gradient, [Formula: see text]. A stable, uniform interface emerges at low Q and in a steeper cell (i.e., greater [Formula: see text]) for the complex fluids, whereas unstable fingering pattern at high Q and smaller [Formula: see text]. Our theoretical predictions with a simplified linear stability analysis show an agreeable stability criterion with experimental data, quantitatively offering strategies to control complex fluid-fluid patterns and displacements in microfluidics and porous media.
尽管具有美学上的优雅性,但当低粘度流体在多孔介质中推动另一种高粘度不混溶流体时,会出现波浪状或指状图案,导致扫掠不完全,并阻碍了一些关键技术。一些例子包括色谱法、印刷、涂层流动、油井固井,以及地下水和强化采油等大规模技术。控制这种指进不稳定性极具挑战性,对于粘度不同的复杂流体尚未得到解决,因为流体的流动性对比往往是预先确定的,而在确定稳定、平坦或不稳定的波浪状界面时,主要驱动力却并不明确。在此,我们通过实验和理论证明,如何使用间隙厚度h(r)呈线性变化的径向锥形单元来抑制或控制一种常见类型的复杂流体(具有低屈服应力的剪切变稀流体)的主要粘性指进图案。在实验中,我们在间隙厚度梯度恒定为[公式:见原文]的径向收敛单元中,以0.02至2 slpm(标准升每分钟)之间变化的恒定流速(Q)用气体驱替复杂粘性(PAA)溶液。对于复杂流体,在低流速Q和较陡的单元(即更大的[公式:见原文])中会出现稳定、均匀的界面,而在高流速Q和较小的[公式:见原文]时则会出现不稳定的指进图案。我们通过简化线性稳定性分析得出的理论预测结果与实验数据显示出一致的稳定性判据,定量地提供了控制微流体和多孔介质中复杂流体 - 流体图案及驱替的策略。