Attar Farid, Sharma Astha, Gupta Bikesh, Karuturi Siva
School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia.
Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT, 2601, Australia.
Adv Sci (Weinh). 2024 Apr;11(14):e2308063. doi: 10.1002/advs.202308063. Epub 2024 Jan 28.
This study presents an innovative, statistically-guided magnetron sputtering technique for creating nanoarchitectonics of high-performing, NiFeMoN electrocatalysts for oxygen evolution reaction (OER) in water splitting. Using a central composite face-centered (CCF) design, 13 experimental conditions are identified that enable precise optimization of synthesis parameters through response surface methodology (RSM), confirmed by analysis of variance (ANOVA). The statistical analysis highlighted a interaction between Mo% and N% in the nanostructured NiFeMoN and found optimizing values at 31.35% Mo and 47.12% N. The NiFeMoN catalyst demonstrated superior performance with a low overpotential of 216 mV at 10 mA cm and remarkable stability over seven days, attributed to the modifications in electronic structure and the creation of new active sites through Mo and N additions. Furthermore, the NiFeMoN coating, when used as a protective layer for a Si photoanode in 1 m KOH, achieved an applied-bias photon-to-current efficiency (ABPE) of 5.2%, maintaining stability for 76 h. These advancements underscore the profound potential of employing statistical design for optimizing synthesis parameters of intricate catalyst materials via magnetron sputtering, paving the way for accelerated advancements in water splitting technologies and also in other energy conversion systems, such as nitrogen reduction and CO conversion.
本研究提出了一种创新的、基于统计指导的磁控溅射技术,用于制备用于水分解中析氧反应(OER)的高性能NiFeMoN电催化剂的纳米结构。采用中心复合面心(CCF)设计,确定了13种实验条件,通过响应面方法(RSM)实现合成参数的精确优化,并通过方差分析(ANOVA)得到证实。统计分析突出了纳米结构NiFeMoN中Mo%和N%之间的相互作用,并发现Mo含量为31.35%和N含量为47.12%时为优化值。NiFeMoN催化剂表现出优异的性能,在10 mA cm下过电位低至216 mV,并且在七天内具有显著的稳定性,这归因于电子结构的改变以及通过添加Mo和N产生了新的活性位点。此外,当NiFeMoN涂层用作1 m KOH中Si光阳极的保护层时,实现了5.2%的外加偏压光子到电流效率(ABPE),并保持了76小时的稳定性。这些进展强调了采用统计设计通过磁控溅射优化复杂催化剂材料合成参数的巨大潜力,为水分解技术以及其他能量转换系统(如氮还原和CO转化)的加速发展铺平了道路。