Suppr超能文献

基于孟德尔随机化的因果效应汇总数据的区间估计,存在赢家诅咒。

Interval estimate of causal effect in summary data based Mendelian randomization in the presence of winner's curse.

机构信息

Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa, USA.

出版信息

Genet Epidemiol. 2024 Mar;48(2):74-84. doi: 10.1002/gepi.22545. Epub 2024 Jan 28.

Abstract

This research focuses on the interval estimation of the causal effect of an exposure on an outcome using the summary data-based Mendelian randomization (SMR) method while accounting for the winner's curse caused by the selection of single nucleotide polymorphism instruments. This issue is understudied and is important as the point estimate is biased. Since Fieller's theorem and its variations are not suitable for constructing a confidence interval, we use the box method. This box method is known to be conservative and thus provides a lower bound on the coverage level. To assess the performance of the box method, we use simulation studies and compare it with the support interval we proposed earlier and the Wald interval derived from the SMR method. All three methods are applied to a study of causal genes for Alzheimer's disease. Overall, the box method presents an alternative for constructing interval estimates for a causal effect while addressing the winner's curse issue.

摘要

本研究旨在使用基于汇总数据的孟德尔随机化(SMR)方法,针对由单核苷酸多态性工具选择引起的“赢家诅咒”问题,对暴露对结局的因果效应进行区间估计。这个问题研究得还不够充分,因为点估计存在偏差,所以很重要。由于 Fieller 定理及其变体不适合构建置信区间,因此我们使用了盒子法。众所周知,这种盒子法是保守的,因此会提供一个置信水平的下限。为了评估盒子法的性能,我们使用了模拟研究,并将其与我们之前提出的支持区间和源自 SMR 方法的 Wald 区间进行了比较。这三种方法都应用于阿尔茨海默病的因果基因研究。总的来说,盒子法为构建因果效应的区间估计提供了一种替代方法,同时解决了赢家诅咒问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验