Seo Kyung Jin, Hill Mackenna, Ryu Jaehyeon, Chiang Chia-Han, Rachinskiy Iakov, Qiang Yi, Jang Dongyeol, Trumpis Michael, Wang Charles, Viventi Jonathan, Fang Hui
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755.
These authors contributed equally to this work.
Npj Flex Electron. 2023;7(1). doi: 10.1038/s41528-023-00271-2. Epub 2023 Aug 22.
Techniques to study brain activities have evolved dramatically, yet tremendous challenges remain in acquiring high-throughput electrophysiological recordings minimally invasively. Here, we develop an integrated neuroelectronic array that is filamentary, high-density and flexible. Specifically, with a design of single-transistor multiplexing and current sensing, the total 256 neuroelectrodes achieve only a 2.3 × 0.3 mm2 area, unprecedentedly on a flexible substrate. A novel single-transistor multiplexing acquisition circuit further reduces noise from the electrodes, decreased the footprint of each pixel, and potentially increased the device lifetime. The filamentary neuroelectronic array also integrates with a rollable contact pad design, allowing the device to be injected through a syringe, enabling potential minimally invasive array delivery. Successful acute auditory experiments in rats validate the ability of the array to record neural signals with high tone decoding accuracy. Together, these results establish soft, high-density neuroelectronic arrays as promising devices for neuroscience research and clinical applications.
研究大脑活动的技术已经有了巨大的发展,然而在以微创方式获取高通量电生理记录方面仍然存在巨大挑战。在此,我们开发了一种丝状、高密度且灵活的集成神经电子阵列。具体而言,通过单晶体管多路复用和电流感应设计,总共256个神经电极在柔性基板上仅占据2.3×0.3平方毫米的面积,这在柔性基板上是前所未有的。一种新颖的单晶体管多路复用采集电路进一步降低了来自电极的噪声,减小了每个像素的占用面积,并有可能延长设备寿命。丝状神经电子阵列还集成了可滚动接触垫设计,允许通过注射器注入该设备,从而实现潜在的微创阵列递送。在大鼠身上成功进行的急性听觉实验验证了该阵列以高音调解码精度记录神经信号的能力。总之,这些结果确立了柔软、高密度神经电子阵列作为神经科学研究和临床应用中有前景的设备。