Asif Misbah, Kosar Naveen, Sajid Hasnain, Qureshi Sana, Gilani Mazhar Amjad, Ayub Khurshid, Arshad Muhammad, Imran Muhammad, Hamid Malai Haniti S A, Bayach Imene, Sheikh Nadeem S, Mahmood Tariq
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
Department of Chemistry, University of Management and Technology (UMT), C-11, Johar Town, Lahore 54782, Pakistan.
ACS Omega. 2024 Jan 12;9(3):3541-3553. doi: 10.1021/acsomega.3c07350. eCollection 2024 Jan 23.
calculations were performed to determine the sensing behavior of g-CN and Li metal-doped g-CN (Li/g-CN) quantum dots toward toxic compounds acetamide (AA), benzamide (BA), and their thio-analogues, namely, thioacetamide (TAA) and thiobenzamide (TAA). For optimization and interaction energies, the ωB97XD/6-31G(d,p) level of theory was used. Interaction energies () illustrate the high thermodynamic stabilities of the designed complexes due to the presence of the noncovalent interactions. The presence of electrostatic forces in some complexes is also observed. The observed trend of in g-CN complexes was BA > TAA > AA > TBA, while in Li/g-CN, the trend was BA > AA > TBA > TAA. The electronic properties were studied by frontier molecular orbital (FMO) and natural bond orbital analyses. According to FMO, lithium metal doping greatly enhanced the conductivity of the complexes by generating new HOMOs near the Fermi level. A significant amount of charge transfer was also observed in complexes, reflecting the increase in charge conductivity. NCI and QTAIM analyses evidenced the presence of significant noncovalent dispersion and electrostatic forces in Li/g-CN and respective complexes. Charge decomposition analysis gave an idea of the transfer of charge density between quantum dots and analytes. Finally, TD-DFT explained the optical behavior of the reported complexes. The findings of this study suggested that both bare g-CN and Li/g-CN can effectively be used as atmospheric sensors having excellent adsorbing properties toward toxic analytes.
进行了计算以确定g-CN和锂金属掺杂的g-CN(Li/g-CN)量子点对有毒化合物乙酰胺(AA)、苯甲酰胺(BA)及其硫代类似物硫代乙酰胺(TAA)和硫代苯甲酰胺(TBA)的传感行为。对于优化和相互作用能,使用了ωB97XD/6-31G(d,p)理论水平。相互作用能()表明由于存在非共价相互作用,所设计的配合物具有高的热力学稳定性。在一些配合物中也观察到了静电力的存在。在g-CN配合物中观察到的趋势是BA>TAA>AA>TBA,而在Li/g-CN中,趋势是BA>AA>TBA>TAA。通过前沿分子轨道(FMO)和自然键轨道分析研究了电子性质。根据FMO,锂金属掺杂通过在费米能级附近产生新的最高占据分子轨道(HOMO)大大提高了配合物的导电性。在配合物中也观察到大量的电荷转移,反映了电荷传导性的增加。非共价相互作用指数(NCI)和量子拓扑原子分子理论(QTAIM)分析证明了Li/g-CN及其相应配合物中存在显著的非共价色散力和静电力。电荷分解分析给出了量子点和分析物之间电荷密度转移的概念。最后,含时密度泛函理论(TD-DFT)解释了所报道配合物的光学行为。本研究结果表明,裸g-CN和Li/g-CN都可以有效地用作对有毒分析物具有优异吸附性能的大气传感器。