Tohidi S, Aghaie-Khafri M, Kadivar M
Faculty of Materials Science and Engineering, KN Toosi University of Technology, Postal Code: 1999143344, Tehran, Iran.
Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
Curr Med Chem. 2024 Jan 26. doi: 10.2174/0109298673266209231214072318.
In recent years, the field of biomedical engineering, particularly drug delivery, has seen significant advancements in the evaluation of various drug carriers. Metal-organic frameworks (MOFs), are porous materials with strong coordination bonds. They have emerged as a promising tool for enhancing the effectiveness of drug delivery.
In this investigation, the effect of chitosan coating on cyclophosphamide loading of MIL-100(Fe) was studied in computational and experimental way.
The chitosan-coated MIL-100(Fe) containing cyclophosphamide (MIL-100(Fe)/CS/CP) was characterized by SEM, FTIR, BET, DLS, and powder X-ray diffraction analysis. The drug loading and release process were quantified using UV-spectroscopy. In vivo-In vitro study was performed.
The result of drug loading in chitosan-coated MIL-100(Fe) with a drug payload of 32% revealed a significant increase compared with the MIL-100(Fe) with a 26.41% payload. According to the DLS analysis the existence of chitosan increase MIL-100(Fe) particle size (381 to 463nm) and change the zeta potential from 18 to -17mV. The toxic effect of MIL-100(Fe)/CS/CP was determined on human breast cancer (MCF-7) cells. In vivo images and H&E analysis shows inhibition properties of MIL-100(Fe)/CS/CP on tumor cells. The amount of drug loading of MIL-100(Fe) particles and MIL-100(Fe)/CS was simulated using molecular dynamic software LAAMPS.
MIL-100(Fe) was synthesized biofriendly at room pressure and temperature with an Iron (II) chloride source coated with chitosan (CS) a natural polysaccharide. Incorporating MIL-100(Fe) with this natural polymer enhanced the drug loading capacity of MIL-100(Fe) and controlled drug release.
近年来,生物医学工程领域,尤其是药物递送领域,在各种药物载体的评估方面取得了显著进展。金属有机框架(MOF)是具有强配位键的多孔材料。它们已成为提高药物递送效果的一种有前途的工具。
在本研究中,通过计算和实验方法研究了壳聚糖包衣对MIL-100(Fe)负载环磷酰胺的影响。
采用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、比表面积分析仪(BET)、动态光散射(DLS)和粉末X射线衍射分析对负载环磷酰胺的壳聚糖包衣MIL-100(Fe)(MIL-100(Fe)/CS/CP)进行表征。使用紫外光谱法定量药物负载和释放过程。进行了体内-体外研究。
壳聚糖包衣的MIL-100(Fe)的药物负载结果显示,载药量为32%,与载药量为26.41%的MIL-100(Fe)相比有显著增加。根据DLS分析,壳聚糖的存在增加了MIL-100(Fe)的粒径(从381纳米增加到463纳米),并将zeta电位从18毫伏改变为-17毫伏。测定了MIL-100(Fe)/CS/CP对人乳腺癌(MCF-7)细胞的毒性作用。体内图像和苏木精-伊红(H&E)分析显示MIL-100(Fe)/CS/CP对肿瘤细胞具有抑制特性。使用分子动力学软件LAAMPS模拟了MIL-100(Fe)颗粒和MIL-100(Fe)/CS的载药量。
在室温和常压下,以氯化亚铁为铁源,用天然多糖壳聚糖(CS)合成了生物友好型的MIL-100(Fe)。将MIL-100(Fe)与这种天然聚合物结合可提高MIL-100(Fe)的载药能力并控制药物释放。