Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria.
Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, Freising 85354, Germany.
Anal Chem. 2024 Feb 13;96(6):2378-2386. doi: 10.1021/acs.analchem.3c04166. Epub 2024 Jan 29.
Nucleic acids attached to electrically conductive surfaces are very frequently used platforms for sensing and analyte detection as well as for imaging. Synthesizing DNA on these uncommon substrates and preserving the conductive layer is challenging as this coating tends to be damaged by the repeated use of iodine and water, which is the standard oxidizing medium following phosphoramidite coupling. Here, we thoroughly investigate the use of camphorsulfonyl oxaziridine (CSO), a nonaqueous alternative to I/HO, for the synthesis of DNA microarrays in situ. We find that CSO performs equally well in producing high hybridization signals on glass microscope slides, and CSO also protects the conductive layer on gold and indium tin oxide (ITO)-coated slides. DNA synthesis on conductive substrates with CSO oxidation yields microarrays of quality approaching that of conventional glass with intact physicochemical properties.
附着在导电表面的核酸经常被用作传感和分析物检测以及成像的平台。在这些不常见的基底上合成 DNA 并保留导电层是具有挑战性的,因为这种涂层容易被碘和水的反复使用所破坏,碘和水是在磷酰胺耦合后标准的氧化介质。在这里,我们彻底研究了樟脑磺酰基恶唑啉(CSO)的用途,CSO 是碘/HO 的非水替代物,用于原位合成 DNA 微阵列。我们发现 CSO 在产生玻璃显微镜载玻片上的高杂交信号方面表现同样出色,CSO 还可以保护金和氧化铟锡(ITO)涂层载玻片上的导电层。使用 CSO 氧化在导电基底上进行 DNA 合成,可得到接近具有完整物理化学性质的常规玻璃的高质量微阵列。