SLC30A10 锰转运蛋白缺失改变了小鼠神经递质基因的表达,并激活了低氧诱导因子信号通路。

Loss of SLC30A10 manganese transporter alters expression of neurotransmission genes and activates hypoxia-inducible factor signaling in mice.

机构信息

Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA.

Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Metallomics. 2024 Feb 7;16(2). doi: 10.1093/mtomcs/mfae007.

Abstract

The essential metal manganese (Mn) induces neuromotor disease at elevated levels. The manganese efflux transporter SLC30A10 regulates brain Mn levels. Homozygous loss-of-function mutations in SLC30A10 induce hereditary Mn neurotoxicity in humans. Our prior characterization of Slc30a10 knockout mice recapitulated the high brain Mn levels and neuromotor deficits reported in humans. But, mechanisms of Mn-induced motor deficits due to SLC30A10 mutations or elevated Mn exposure are unclear. To gain insights into this issue, we characterized changes in gene expression in the basal ganglia, the main brain region targeted by Mn, of Slc30a10 knockout mice using unbiased transcriptomics. Compared with littermates, >1000 genes were upregulated or downregulated in the basal ganglia sub-regions (i.e. caudate putamen, globus pallidus, and substantia nigra) of the knockouts. Pathway analyses revealed notable changes in genes regulating synaptic transmission and neurotransmitter function in the knockouts that may contribute to the motor phenotype. Expression changes in the knockouts were essentially normalized by a reduced Mn chow, establishing that changes were Mn dependent. Upstream regulator analyses identified hypoxia-inducible factor (HIF) signaling, which we recently characterized to be a primary cellular response to elevated Mn, as a critical mediator of the transcriptomic changes in the basal ganglia of the knockout mice. HIF activation was also evident in the liver of the knockout mice. These results: (i) enhance understanding of the pathobiology of Mn-induced motor disease; (ii) identify specific target genes/pathways for future mechanistic analyses; and (iii) independently corroborate the importance of the HIF pathway in Mn homeostasis and toxicity.

摘要

必需微量元素锰(Mn)在含量过高时会引发神经运动疾病。锰外排转运蛋白 SLC30A10 可调节大脑中的 Mn 水平。SLC30A10 中的纯合功能丧失性突变会在人类中引发遗传性 Mn 神经毒性。我们之前对 Slc30a10 基因敲除小鼠的特性描述,重现了人类报告的大脑中 Mn 含量升高和神经运动缺陷。但是,由于 SLC30A10 突变或 Mn 暴露导致的 Mn 诱导运动缺陷的机制尚不清楚。为了深入了解这一问题,我们使用无偏转录组学方法研究了 SLC30A10 基因敲除小鼠大脑中主要受 Mn 影响的基底神经节区域的基因表达变化。与同窝仔鼠相比,敲除鼠的基底神经节亚区(即尾状核、苍白球和黑质)中超过 1000 个基因的表达上调或下调。通路分析显示,敲除鼠中调节突触传递和神经递质功能的基因发生了显著变化,这可能是导致运动表型的原因。降低 Mn 饲料可使敲除鼠的表达变化基本恢复正常,这表明变化是 Mn 依赖性的。上游调控因子分析确定了缺氧诱导因子(HIF)信号通路,我们最近的研究表明,该通路是细胞对升高的 Mn 的主要反应,是敲除鼠基底神经节转录组变化的关键介质。HIF 的激活在敲除鼠的肝脏中也很明显。这些结果:(i)增强了对 Mn 诱导运动疾病的病理生物学的理解;(ii)确定了特定的靶基因/通路,以供未来的机制分析;(iii)独立证实了 HIF 通路在 Mn 动态平衡和毒性中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a60/10883138/da16e85d903e/mfae007fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索