Suppr超能文献

一种诱导多能干细胞衍生的神经元模型揭示了锰在神经元内吞作用、钙通量和线粒体生物能量学中的作用。

An iPSC-derived neuronal model reveals manganese's role in neuronal endocytosis, calcium flux and mitochondrial bioenergetics.

作者信息

Budinger Dimitri, Alhaque Sharmin, González-Méndez Ramón, Dadswell Chris, Barwick Katy, Ferrini Arianna, Roth Charlotte, McCann Conor J, Tuschl Karin, Al Jasmi Fatma, Zaki Maha S, Park Julien H, Dale Russell C, Mohammad Shekeeb, Christodoulou John, Moulding Dale, Duchen Michael R, Barral Serena, Kurian Manju A

机构信息

Department of Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK.

School of Life Sciences, University of Sussex, Brighton, UK.

出版信息

iScience. 2025 Aug 6;28(9):113311. doi: 10.1016/j.isci.2025.113311. eCollection 2025 Sep 19.

Abstract

Manganese (Mn) is an essential trace metal required for normal biological function, yet it also poses neurotoxic risks when dysregulated. Maintaining proper intracellular and extracellular Mn levels is critical, as Mn imbalance has been implicated in a spectrum of human diseases-including inherited Mn transport disorders, acquired manganism, and more prevalent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Despite these associations, the cellular mechanisms driving Mn-induced neuropathology remain poorly understood. To investigate this, we developed an induced pluripotent stem cell (iPSC)-derived midbrain neuronal model using patient lines with mutations in SLC39A14, SLC39A8, and SLC30A10. Through integrated transcriptomic and functional analyses, we found that Mn dyshomeostasis disrupts essential neuronal pathways, including mitochondrial bioenergetics, calcium signaling, endocytosis, glycosylation, and stress responses-leading to early neurodegeneration. This humanized model advances our understanding of Mn's impact on neuronal health and disease and highlights potential molecular targets for future therapeutic interventions in Mn-related neurological disorders.

摘要

锰(Mn)是正常生物功能所需的必需微量元素,但当调节失调时,它也会带来神经毒性风险。维持适当的细胞内和细胞外锰水平至关重要,因为锰失衡与一系列人类疾病有关,包括遗传性锰转运障碍、后天性锰中毒以及更常见的神经退行性疾病,如帕金森病和阿尔茨海默病。尽管存在这些关联,但驱动锰诱导神经病理学的细胞机制仍知之甚少。为了对此进行研究,我们使用在SLC39A14、SLC39A8和SLC30A10中存在突变的患者细胞系,开发了一种诱导多能干细胞(iPSC)衍生的中脑神经元模型。通过综合转录组学和功能分析,我们发现锰稳态失衡会破坏重要的神经元通路,包括线粒体生物能量学、钙信号传导、内吞作用、糖基化和应激反应,从而导致早期神经退行性变。这种人源化模型增进了我们对锰对神经元健康和疾病影响的理解,并突出了未来针对锰相关神经系统疾病进行治疗干预的潜在分子靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61de/12410566/0728476411d6/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验